МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г. Шухова)

УТВЕРЖДАЮ

Директор института энергетики, информационных технологий и управляющих систем

канд. техн. наук, доцент

А.В. Белоусов

« <u>20</u>

202 Уг.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

ЭЛЕКТРОТЕХНИКА

направление подготовки (специальность): 15.03.06 Мехатроника и робототехника

Направленность программы (профиль, специализация): Мехатроника и робототехника

> Квалификация бакалавр

Форма обучения очная

Институт энергетики, информационных технологий и управляющих систем Кафедра электроэнергетики и автоматики Рабочая программа составлена на основании требований:

Федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.06 «Мехатроника и робототехника», утвержденного приказом Министерства науки и высшего образования РФ № 1046 от 17 августа 2020 г.; учебного плана, утвержденного ученым советом БГТУ им. В.Г. Шухова в 2021 году Составитель: канд. техн. наук А.С. Солдатенков Рабочая программа обсуждена на заседании кафедры электроэнергетики и автоматики Заведующий кафедрой: канд. техн. наук, доцент А.В. Белоусов Рабочая программа согласована с выпускающей кафедрой технической кибернетики Заведующий кафедрой: д-р техн. наук., профессор ______ В.Г. Рубанов « [Ч » _____ 2021 г., протокол № ___ 9

Рабочая программа одобрена методической комиссией института энергетики, информационных технологий и управляющих систем

«<u>10</u>» <u>05</u> 2021 г., протокол № 9

Председатель: канд. техн. наук, доцент

А.Н. Семернин

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Категория (группа) компетенций	Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Наименование показателя оценивания результата обучения по дисциплине
компетенции	ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	ОПК-1.6. Решает задачи профессиональной деятельности на основе общеинженерных знаний и методов математического анализа	Знания основных теоретических положений и понятий в области электротехники, стандартных графических обозначений и математического описания основных элементов электрических цепей, теории и методов анализа линейных электрических цепей постоянного, а также однофазного и трехфазного синусоидального тока в установившемся режиме, теории и методов расчета переходных процессов в электрических цепях, а также необходимые теоретические сведения по безопасной работе с
			электроустановками. Умения ставить и решать задачи анализа и синтеза электрических цепей, составлять на основе законов электрических цепей расчетные модели для компьютерных программ, а также пользоваться справочными и каталожными данными типового электротехнического оборудования; Навыки сборки электрических схем и проведения измерений электрических величин.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

1. Компетенция ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности.

Данная компетенция формируется следующими дисциплинами.

Стадия	Наименования дисциплины
1	Высшая математика
2	Физика
3	Теоретическая механика
4	Электрорадиоматериалы
5	Электротехника
6	Основы мехатроники и робототехники
7	Государственная итоговая аттестация

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 3 зач. единиц, 108 часов. Дисциплина реализуется в рамках практической подготовки: 2 зач. единицы. Форма промежуточной аттестации дифференцированный зачет (4 семестр)

Вид учебной работы	Всего	Семестр
, -	часов	№ 4
Общая трудоемкость дисциплины, час	108	108
Контактная работа (аудиторные занятия), в т.ч.:	53	53
лекции	17	17
лабораторные	17	17
практические	17	17
групповые консультации в период теоретического обучения	2	2
и промежуточной аттестации		
Самостоятельная работа студентов, включая	55	55
индивидуальные и групповые консультации, в том числе:		
Курсовой проект	_	-
Курсовая работа		-
Расчетно-графическое задание	-	-
Индивидуальное домашнее задание	9	9
Самостоятельная работа на подготовку к аудиторным	46	46
занятиям (лекции, практические занятия, лабораторные		
занятия)		
Экзамен	-	-

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Наименование тем, их содержание и объем

Курс 2 Семестр 4

		Объ	ем на т	ематич	еский
		разде	ел по ви	идам уч	ебной
			нагруз	вки, час	2
<u>№</u> π/π	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа на подготовку к аудиторным занятиям
1. (Основные понятия электротехники				
1.1	Электрическая энергия, особенности ее производства, распределения и области применения. Роль электротехники в развитии автоматизированных систем управления и робототехнике. История развития электротехники. Основные понятия и обозначения электрических и магнитных величин и элементов. Связь между электрическими и магнитными явлениями. Основные законы электрических цепей. Основные теоретические сведения по безопасной работе с электроустановками и проведению электрических измерений.	1		1	2

			ел по ві	ематич идам уч вки, час	ебной
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа на подготовку к аудиторным занятиям
2. T	Геория линейных электрических цепей постоянного тока				
2.1	Электрические и магнитные цепи. Элементы электрических цепей. Научные абстракции, применяемые в теории электрических цепей, цепи с распределенными и сосредоточенными параметрами. Источники ЭДС и тока. Резистор. Катушка индуктивности. Конденсатор. Связь между током и напряжением в основных элементах электрических цепей. Основные топологические понятия. Понятие двухполюсника. Классификация электрических цепей. Схемы электрических цепей. Эквивалентирование. Матрицы соединений, граф схемы, компьютерный расчет электрических цепей.	2	2	2	5
2.2	Электрическая энергия и мощность. Баланс мощностей. Методы расчета электрических цепей: эквивалентных преобразований, двух узлов, контурных токов, узловых напряжений, наложения (суперпозиции), и эквивалентного генератора.	2	6	2	9
	Электрические цепи переменного синусоидального тока				
3.1	Синусоидальные ЭДС, напряжения и токи. Способы получения переменного тока. Мгновенные, действующие и средние значения электрических величин. Изображение синусоидальных величин в виде вращающихся векторов. Установившийся режим в RLС цепи. Комплексный метод расчета цепей переменного синусоидального тока. Комплексные сопротивление и проводимость. Активная, реактивная и полная мощности. Коэффициент мощности.	2	2	2	5
3.2	Резонансные явления и частотные характеристики.	1	2	2	5
	Резонанс напряжений и токов. Условие резонанса. Понятие добротности. Векторные диаграммы.				
4. T	Грехфазные электрические цепи переменного тока				
4.1	Трехфазные и многофазные электрические цепи. Достоинства и недостатки трехфазных цепей по отношению к однофазным. Устройство и принцип действия простейшего генератора трехфазного переменного тока. Способы соединения элементов трехфазных цепей. Фазные и линейные напряжения и токи. Нулевая, прямая и обратная последовательности.	2			2
4.2	Расчет трехфазной цепи при соединении звездой. Трехпроводная и четырехпроводная схемы. Симметричная и несимметричная нагрузки. Обрыв фазы, линейного и нейтрального провода. Напряжение смещения нейтрали. Расчет трехпроводной трехфазной	2		4	5

			ем на т			
		нагрузки, час				
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа на подготовку к аудиторным занятиям	
	цепи при соединении треугольником. Мощность в					
	трехфазных системах. Переключение со схемы звезда в					
	схему треугольник.					
	Переходные процессы в линейных электрических цепях					
5.1	Причины возникновения переходных процессов в электрических цепях. Общий путь расчета переходных процессов в линейных электрических цепях. Определение постоянных интегрирования и законы коммутации.	1			1	
5.2	Расчет переходных процессов классическим методом в цепях с индуктивными и емкостными элементами.	2	3	4	8	
5.3	Операторный метод расчета цепей с сосредоточенными параметрами. Основные законы в операторной форме. Переход от изображения к оригиналу. Теорема разложения. Свойства корней характеристического уравнения. Расчет переходных процессов в цепях с индуктивными и емкостными элементами операторным методом.	2	2		4	
	ВСЕГО	17	17	17	46	

4.2. Содержание практических (семинарских) занятий

No	Наименование	Тема практического (семинарского)	К-во	Самостоятельная
Π/Π	раздела дисциплины	занятия	часов	работа на подготовку к
				аудиторным
				занятиям
		семестр № 4		
1	Теория линейных	Определение входных	2	2
	электрических цепей	сопротивлений двухполюсников		
	постоянного тока			
2	Теория линейных	Применение законов Ома и	2	2
	электрических цепей	Кирхгофа для расчета		
	постоянного тока	электрических цепей постоянного		
		тока		
3	Теория линейных	Электрическая энергия, мощность и	2	2
	электрических цепей	баланс мощностей в электрических		
	постоянного тока	цепях		
4	Теория линейных	Расчет линейных электрических	2	2
	электрических цепей	цепей постоянного тока методами		
	постоянного тока	контурных токов, узловых		
		потенциалов и эквивалентного		
		генератора		
5	Электрические цепи	Применение законов Ома и	2	2
	переменного	Кирхгофа для расчета однофазных		

№	Наименование	Тема практического (семинарского)	К-во	Самостоятельная
Π/Π	раздела дисциплины	занятия	часов	работа на подготовку к
				аудиторным
				занятиям
	синусоидального	линейных электрических цепей		
	тока	синусоидального тока		
6	Электрические цепи	Расчет однофазных электрических	2	2
	переменного	цепей синусоидального тока		
	синусоидального	методами контурных токов, узловых		
	тока	потенциалов и эквивалентного		
		генератора		
7	Переходные	Классический метод расчета	3	3
	процессы в линейных	переходных процессов в		
	электрических цепях	электрических цепях		
8	Переходные	Операторный метод расчета	2	2
	процессы в линейных	переходных процессов в		
	электрических цепях	электрических цепях		
		ОТОГИ	17	17

4.3. Содержание лабораторных занятий

№ п/п	Наименование раздела дисциплины	Тема лабораторного занятия	К-во 0 часов	Самостоятельная работа на подготовку к аудиторным занятиям
		семестр № 4		
1	Основные понятия электротехники	Основы безопасной работы с электроустановками. Электрические измерения	1	1
2	Теория линейных электрических цепей постоянного тока	Исследование режимов работы и методов расчета линейных электрических цепей постоянного тока с двумя источниками ЭДС	4	4
3	Электрические цепи переменного синусоидального тока	Определение параметров электрической цепи переменного тока с последовательным соединением катушки индуктивности, резистора и конденсатора. Резонанс напряжений	4	4
4	Трехфазные электрические цепи переменного тока	Определение параметров и исследование режимов работы трехфазной электрической цепи при соединении потребителей звездой	4	4
5	Переходные процессы в линейных электрических цепях	Исследование процесса зарядки конденсатора от источника постоянного напряжения при ограничении тока с помощью резистора	4	4
		ИТОГО:	17	17

4.4. Содержание курсового проекта/работы

Не предусмотрено учебным планом.

4.5. Содержание расчетно-графического задания, индивидуальных домашних заданий

Учебным планом предусмотрено одно индивидуальное домашнее задание.

Цель задания: приобретение навыков применения различных методов расчета электрических цепей переменного синусоидального тока с несколькими источниками электрической энергии в установившемся режиме.

Структура работы. Практическое задание – это решение задачи по разделу «Электрические цепи переменного синусоидального тока».

Оформление индивидуального домашнего задания. ИДЗ предоставляется преподавателю для проверки в виде отчета на бумажных листах в формате А4, содержащих решение практического задания. Отчет должен иметь следующую структуру: титульный лист; содержание; расчетная часть; список использованной литературы. Расчетная часть должна сопровождаться необходимыми комментариями, т.е. все основные моменты процесса решения задачи должны быть раскрыты и обоснованы на основе соответствующих теоретических положений. Срок сдачи ИДЗ определяется преподавателем.

Типовой пример задания. Для заданной электрической цепи, параметры, параметры которой приведены в таблице (по вариантам), необходимо:

- выполнить чертеж схемы исходной электрической цепи;
- методом контурных токов определить контурные токи и токи во всех ветвях исходной схемы;
- методом узловых напряжений определить узловые потенциалы и токи во всех ветвях исходной схемы;
- методом эквивалентного генератора определить ток в ветви между узлами 1 и 2 исходной схемы;
- провести проверку правильности расчета исходной схемы с помощью баланса мощностей;
- для исходной схемы построить график зависимости тока в ветви между узлами 1 и 2 от ее активного сопротивления;
- модифицировать исходную схему путем включения в ветвь 1-2 идеального источника тока с одновременным исключением первого источника ЭДС; выполнить чертеж модифицированной схемы электрической цепи;
- методом контурных токов определить токи во всех ветвях модифицированной схемы;
- методом узловых напряжений определить токи во всех ветвях модифицированной схемы;
- провести проверку правильности расчета модифицированной схемы с помощью баланса мощностей.

Для расчетных токов в каждой ветви необходимо привести комплексные и действующие значения. Во всех случаях считать, что взаимоиндукцией между ветвями электрической цепи можно пренебречь, а все элементы схемы идеальны.

Пример варианта задания:

Ветвь и	Пара	метры нагр	узки	Парамет	ры исто	чника ЭД	ДС
направление тока в ней	<i>R</i> , Ом	L , м Γ н	C , мк Φ	Направление	<i>E</i> , B	φ , $^{\circ}$	f, Гц
1→2	100	12	11				
1→3	12			3→1	80	16	23
1→4	22	22	15				
24	15	56	39				
2→5	82	56					
3→4	51		56				
3→6	39			3→6	40	-22	23
4→5	47	33	11				
4→6	20	12	16				
4→7	10	47	91		_		
5→7	18			7→5	60	30	23
6→7	36			6→7	40	75	23

Ток идеального источника тока $J_{12} = 0.81$ A.

Схема электрической цепи, содержащая 7 узлов и 6 независимых контуров, представлена в виде таблицы (по вариантам), каждая строка которой описывает параметры соответствующей ветви. В столбце 1 указаны заданные направления токов в ветвях, соединяющих соответствующие узлы. Параметры нагрузочных сопротивлений в ветвях схемы представлены в столбцах 2-4, а параметры идеальных источников ЭДС – в столбцах 5-8 (в столбце 6 указано действующее значение ЭДС источника, в столбце 7 – его начальная фаза в градусах, а в столбце 8 – линейная частота).

При модификации исходной схемы электрической цепи путем добавления идеального источника тока в ветвь 1-2, следует также исключить источник ЭДС с наименьшим индексом. Направление источника тока совпадает с направлением тока в ветви 1-2.

В процессе выполнения индивидуального домашнего задания осуществляется контактная работа обучающегося с преподавателем. Консультации проводятся в аудитория и/или посредствам электронной информационнообразовательной среды университета.

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1. Реализация компетенций

1. Компетенция ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности

Наименование индикатора достижения компетенции	Используемые средства оценивания		
ОПК-1.6. Решает задачи профессиональной	дифференцированный зачет, защита ИДЗ, защита		
деятельности на основе общеинженерных	лабораторных работ, собеседование		
знаний и методов математического анализа			

5.2. Типовые контрольные задания для промежуточной аттестации

Промежуточная аттестация осуществляется после завершения изучения дисциплины в конце **четвертого семестра** в форме дифференцированного зачета.

Перечень контрольных вопросов (типовых заданий) для дифференцированного зачета

№	Наименование	Содержание вопросов (типовых заданий)
Π/Π	раздела дисциплины	
1	Основные понятия	1. Основные этапы развития электротехники.
	электротехники	2. Основные понятия и определения теории
		электрических цепей. Элементы электрических цепей.
		Схемы электрических цепей. Эквивалентные схемы
		источников электрической энергии.
		3. Законы Ома, Кирхгофа, Джоуля-Ленца и их
		применение для расчета и анализа электрических
		цепей.
2	Теория линейных	4. Связь между током и напряжением в основных
	электрических цепей	элементах электрических цепей.
	постоянного тока	5. Способы соединения элементов электрических цепей.
		Правила эквивалентирования. Преобразование
		пассивных трехполюсников.
		6. Классификация электрических цепей.
		7. Энергия и мощность в электрических цепях. Баланс
		мощностей.
		8. Расчет электрических цепей методом эквивалентных
		преобразований.
		9. Расчет электрических цепей методом контурных
		токов.
		10. Расчет электрических цепей методом узловых
		напряжений.
		11. Расчет электрических цепей методом эквивалентного
		генератора.
		12. Расчет электрических цепей методом двух узлов.
		13. Расчет электрических цепей методом наложения.
3	Электрические цепи	14. Электрические цепи переменного синусоидального
	переменного	тока. Преимущества и недостатки. Получение
	синусоидального тока	синусоидальной ЭДС. Сдвиг фаз.
		15. Синусоидальный ток. Величины характеризующие,
		синусоидальный ток. Источники синусоидальных ЭДС
		и токов.
		16. Действующие и средние значения синусоидальных

№	Наименование	Содержание вопросов (типовых заданий)
п/п	раздела дисциплины	величин (тока, ЭДС, напряжения). Коэффициент
		амплитуды, коэффициент формы.
		17. Изображение синусоидальных величин в виде
		вращающихся векторов. Понятие векторной
		диаграммы.
		18. Установившийся режим в цепи переменного
		синусоидального тока с последовательным
		соединением элементов R, L и C.
		19. Комплексный (символический) метод расчета цепи
		переменного синусоидального тока. Векторные
		диаграммы. Комплексные сопротивление и
		проводимость. Законы Кирхгофа и Ома в комплексной
		форме.
		20. Мощность в цепи переменного тока. Активная,
		реактивная и полная мощности. Коэффициент
		мощности. Треугольник мощностей.
		21. Баланс мощности в цепях синусоидального тока.
		22. Резонансные явления в электрических цепях. Резонанс
		напряжений. Понятие добротности.
		23. Резонансные явления в электрических цепях. Резонанс
		токов.
		24. Частотные характеристики электрических цепей (на
		примере RLC-цепи).
4	Трехфазные	25. Трехфазные электрические цепи переменного тока.
	электрические цепи	Преимущества. Получение трехфазной системы ЭДС.
	переменного тока	26. Основные способы соединения приемников в
		трехфазных системах. Понятие нейтрали. Фазные и
		линейные токи и напряжения.
		27. Расчет симметричных и несимметричных трехфазных
		цепей, включенных по схеме соединения звезда-звезда
		с нейтральным проводом. 28. Расчет симметричных и несимметричных трехфазных
		цепей, включенных по схеме соединения звезда-звезда
		без нейтрального провода.
		29. Способы борьбы с несимметрией напряжений в
		трехфазных электрических цепях. Роль нейтрального
		провода.
		30. Обрыв и короткое замыкание фазы приемника при
		симметричной и несимметричной нагрузке.
		31. Расчет трехфазной электрической цепи при
		соединении треугольником.
		32. Мощность в трехфазных системах. Измерение
		активной мощности в трехфазной системе.
		Переключение потребителей со звезды в треугольник.

Наименование	Содержание вопросов (типовых заданий)
	33. Определение переходных процессов. Принужденные и
линейных	свободные составляющие токов и напряжений. Общий
электрических цепях	путь расчета переходных процессов в электрических цепях классическим способом.
	34. Определение постоянных интегрирования при расчете
	переходных процессов в электрических цепях. Законы коммутации.
	35. Переходные процессы в электрической цепи,
	состоящей из последовательно соединенных элементов R и L.
	36. Переходные процессы в электрической цепи,
	состоящей из последовательно соединенных элементов R и C.
	37. Переходные процессы в электрической цепи,
	состоящей из последовательно соединенных элементов
	R, L и C.
	38. Переходные процессы при мгновенном изменении
	параметров участка цепи (на примере сопротивления).
	39. Операторный метод расчета переходных процессов.
	Преобразование Лапласа и его свойства. Изображения типовых функций.
	40. Правила Кирхгофа и закон Ома в операторной форме.
	41. Определение эквивалентных операторных
	сопротивлений при последовательном, параллельном и смешанном соединении приемников электрической
	энергии.
	42. Расчет переходных процессов в электрических цепях операторным методом.
	43. Восстановление оригинала по его изображению.
	Теорема разложения.
	44. Методы контурных токов и узловых напряжений в
	операторной форме.
	45. Свойства корней характеристического уравнения (на примере колебательного контура).
	раздела дисциплины Переходные процессы в линейных

5.3. Типовые контрольные задания (материалы) для текущего контроля в семестре

Текущий контроль осуществляется в течение 4 семестра в форме собеседования во время проведения практических занятий, защиты лабораторных работ, выполнения и защиты ИДЗ.

Примеры типовых вопросов и задач для практических занятий Задача №1. Определение входных сопротивлений двухполюсников.

Для заданной схемы электрической цепи относительно заданных зажимов

(точек) определить входные сопротивления $R_{{\scriptscriptstyle BX1}}$ и $R_{{\scriptscriptstyle BX2}}$. Схема электрической цепи и значения сопротивлений выбираются по последним двум цифрам номера зачетной книжки студента, как представлено в таблице:

Схема электрической цепи

Предпоследняя		R_B	X1	R_{B2}	R_{BX2}		
цифра шифра	Схема	Относительно	Положение	Относительно	Положение		
цифра шифра		точек	ключей	точек	ключей		
0	Рис. 1	1–6		1–3			
1	Рис. 1	2–6		1–4			
2	Рис. 1	3–6		2–4			
3	Рис. 1	4–6		2–5			
4	Рис. 1	5–6		3–5			
5	Рис. 2	1–2	K_1K_2	1–2	K_1K_2		
6	Рис. 2	1–3	K_1K_2	1–3	K_1K_2		
7	Рис. 2	1–4	K_1K_2	1–4	K_1K_2		
8	Рис. 2	1–4	$K_1 K_2$	2–3	K_1K_2		
9	Рис. 2	1–2	$K_1 K_2$	2–4	K_1K_2		

Численные значения сопротивлений

Последняя	R_1 ,	R_2 ,	R_3 ,	R_4 ,	R_5 ,	R_6 ,	R_7 ,	R_8 ,	R_9 ,
цифра шифра	Ом								
1	7	4	2	4	9	9	10	9	10
2	5	3	6	2	5	10	5	3	6
3	4	10	3	7	6	3	1	10	5
4	1	9	3	10	6	6	1	6	1
5	9	6	9	5	9	8	6	4	9
6	7	6	3	6	5	3	9	10	6
7	4	7	4	7	7	3	2	4	8
8	6	9	9	6	5	8	3	6	5
9	3	10	2	5	1	8	10	2	1
0	2	2	6	9	7	7	9	9	8

Условное обозначение: K — соответствует разомкнутому положению ключа, K — соответствует замкнутому положению ключа.

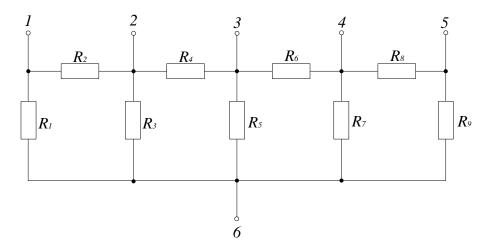
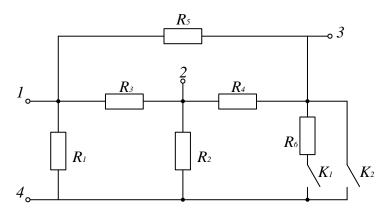
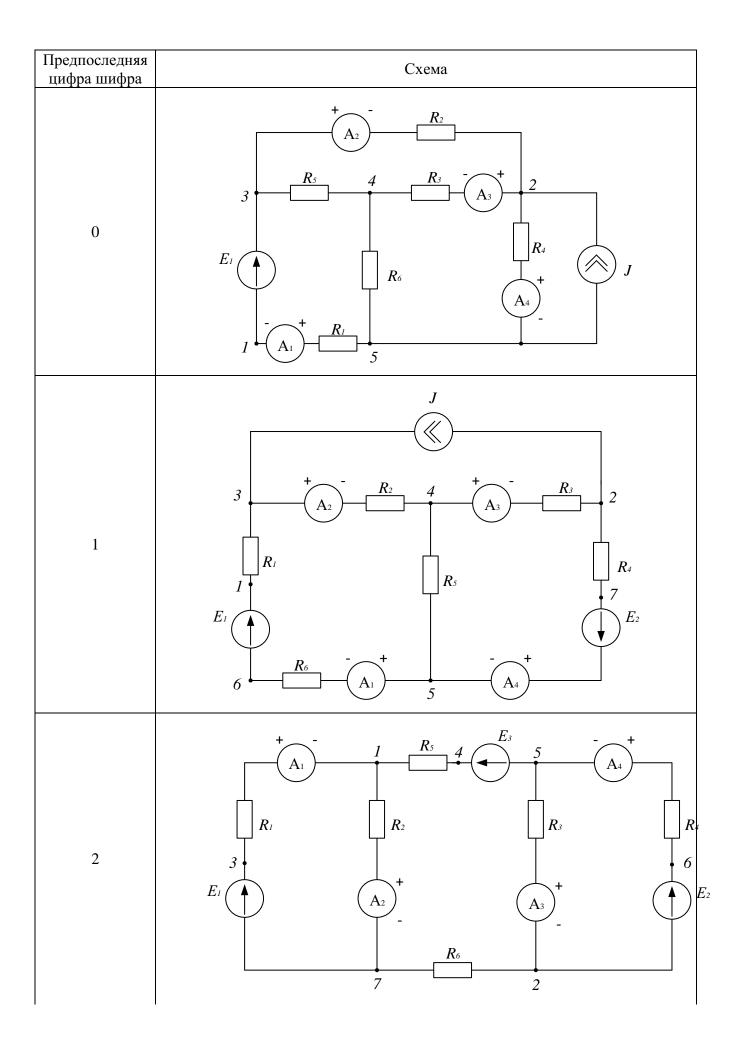
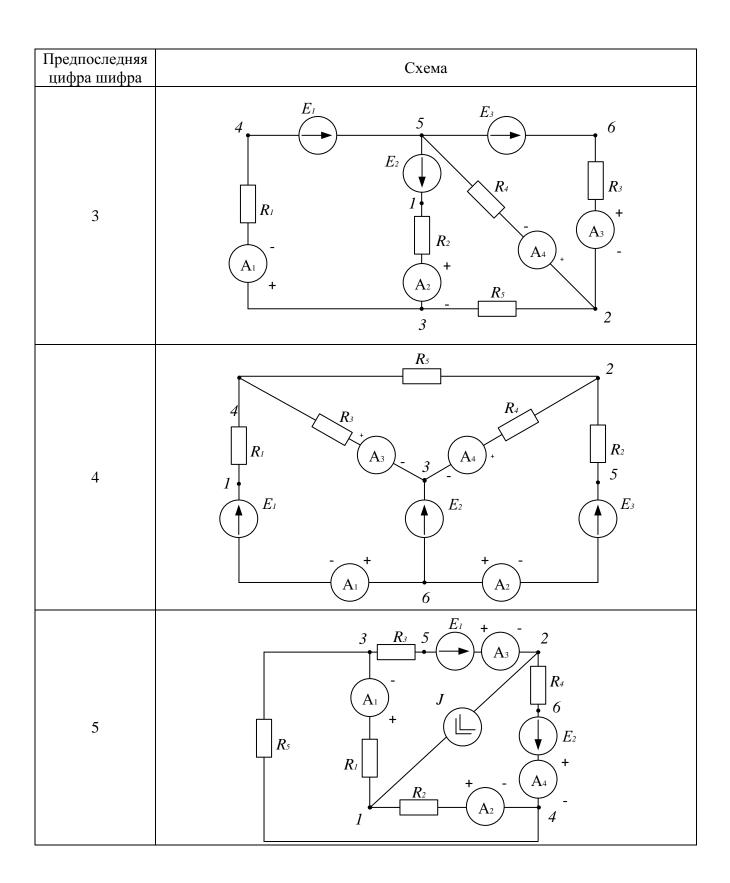
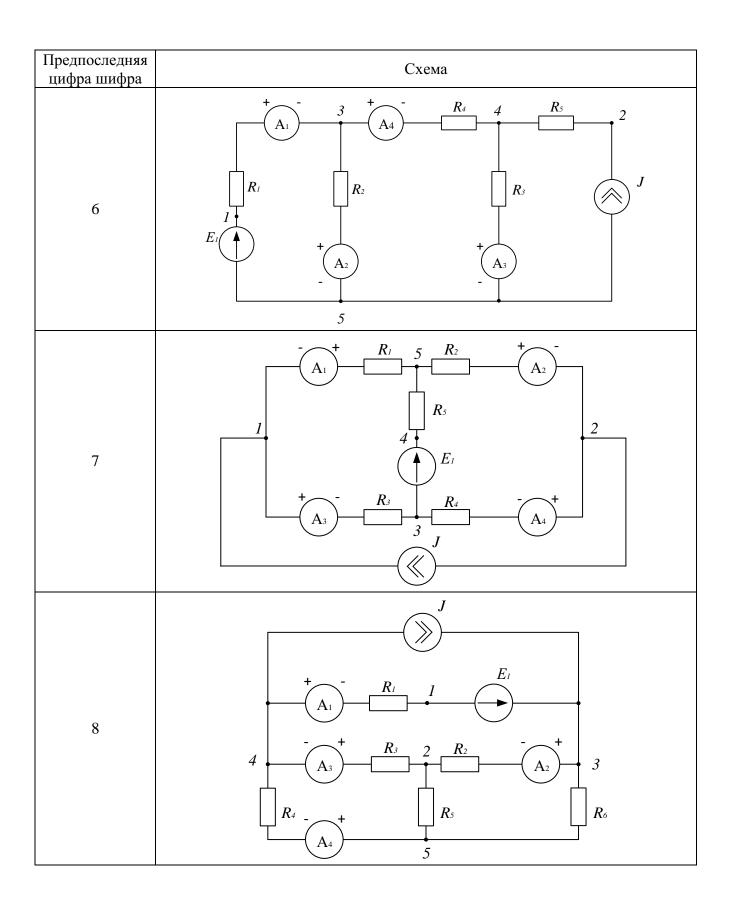


Рис. 1. Схема электрической цепи к задаче 1




Рис. 2. Схема электрической цепи к задаче 1


Задача №2. Применение законов Ома и Кирхгофа для расчета электрических цепей постоянного тока.


Для заданной схемы электрической цепи и дополнительными данными о показаниях амперметров, представленными в таблицах:

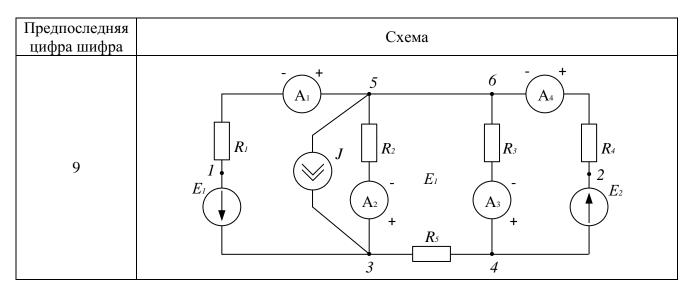

- рассчитать токи во всех ветвях цепи;
- определить напряжение U_{12} между точками 1 и 2;
- приняв равным нулю потенциал одной из точек схемы, рассчитать потенциалы всех остальных точек;
- определить мощность, рассеиваемую на каждом сопротивлении цепи, а также мощность на каждом источнике ЭДС и источнике тока.

Схема электрической цепи

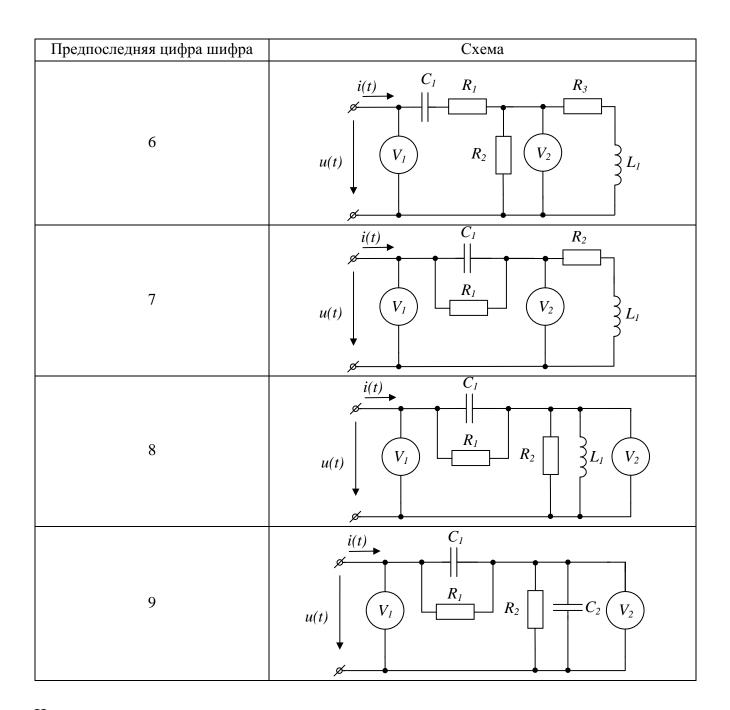
Численные значения параметров элементов схемы

Последняя цифра шифра	R_1 , O_M	R_2 , OM	R_3 , OM	R_4 , O_M	R_5 , O_M	R_6 , O_M	E_1, B	$E_2,$ B	E_3 , B	J, A
1	10	5	20	30	6	12	30	40	10	2
2	20	15	15	10	30	30	12	20	60	1
3	5	20	1	20	10	30	80	50	30	3
4	20	7	12	12	6	15	30	12	20	2
5	6	10	10	30	15	12	60	100	80	4
6	4	30	10	20	30	20	28	36	120	4
7	10	10	1	10	20	24	20	30	40	3
8	8	12	16	20	10	20	10	28	36	2
9	20	25	7	25	2	8	120	60	90	3
0	15	30	15	8	20	30	40	80	100	2

Дополнительные данные о показаниях амперметров

Последняя цифра	1	2	3	4	5	6	7	8	9	0
Предпоследняя										
цифра										
0	$I_2=-0.59$ $I_4=0.94$	$I_2=0,036$ $I_3=0,14$	$I_1=1,87$ $I_4=2,93$	$I_1=0.57$ $I_2=-0.062$	$I_2=-0,2$ $I_3=1,93$	$I_2=-0,44$ $I_4=1,41$	$I_1 = -0.048$ $I_2 = -0.06$	$I_1 = -0.41$ $I_4 = 0.993$	$I_2=-0.017$ $I_4=1.86$	$I_1=0.83$ $I_2=0.32$
1	$I_I = 0,62$	$I_2=1$	<i>I</i> _{3=4,7}	$I_4=-0,34$	$E_{I}=0.93$	$I_2=2,64$	$I_3=3,96$	$I_4 = -0.51$	I_I =0,86	$I_2=2,04$
2	$I_I=1,84$	$I_2=0,86$	$I_3=3,05$	$I_4=0,78$	$I_I=2,65$	$I_2=1,03$	$I_3=2,13$	$I_4=1,21$	$I_I = 1,91$	$I_2=1,53$

Последняя цифра	1	2	3	4	5	6	7	8	9	0
Предпоследняя цифра										
3	$I_I=4,5$	$I_2=0,69$	$I_3=6,69$	$I_{4}=0,57$	$I_{I}=11,43$	$I_2=1,59$	$I_3=4,74$	$I_4=0,72$	$\mathcal{E}'L=I$	$I_2=2,34$
4	$I_I = 0,42$	$I_2=1,77$	$I_3=4,4$	$I_4=0,46$	$I_{I}=-2,74$	$I_2=2,03$	$I_3=-0,7$	$I_4=-0.029$	$I_I=2,23$	$I_2\!\!=\!\!0,\!68$
5	$I_{I}=1,18$	$I_2=0,22$	$I_3=7,36$	$I_{4}=0,37$	$I_{I}=4,32$	$I_2=0.82$	$I_3=4,52$	$I_4=0,016$	$I_{I=1,8}$	$I_2=-0,21$
6	$I_{I}=1,81$	$I_2=0,51$	$I_3=5,44$	<i>I</i> ₄ =-0,56	$I_{I}=3,71$	$I_2=0,88$	$I_3=3,44$	$I_4=-0,64$	$I_{I}=3,26$	$I_2=0,92$
7	I_{I} =-0,66	$I_2=0,57$	$I_3=6,5$	$I_4=0,21$	$I_I = -1,08$	$I_2=1,95$	$I_3=2,62$	<i>I</i> ₄ =-0,55	$I_I=3,16$	$I_2=1,04$
8	$I_1 = -$ 0,045	$I_1 = -0.13$ $I_3 = 0.45$	$I_1=2,08$ $I_4=0,75$	$I_{2}=1,47$ $I_{3}=1,2$	$I_3=3,11$ $I_4=1,25$	$I_1 = -0.25$ $I_3 = 2.2$	$I_{1=-0,25}$ $I_{3=2,2}$	$I_{1}=-0.94$ $I_{4}=0.46$	$I_2=1,53$ $I_3=4,22$	$I_{3}=0,81$ $I_{4}=1,17$
9	I_I =1,84	$I_2=0,58$	$I_3=2,61$	$I_4=1,2$	$I_I=3,1$	$I_2=1,15$	$I_3=2,61$	$I_4=1,3$	$I_I=4,38$	$I_2=1,89$


Задача №3. Электрическая энергия, мощность и баланс мощностей в электрических цепях.

К заданной электрической цепи приложено синусоидальное напряжение $u(t) = U_m \cdot \sin \omega t$ с известной амплитудой U_m и частотой f. В соответствии с вариантом схемы и численными значениями ее элементов необходимо:

- рассчитать мгновенное значение тока i(t) в неразветвленной части схемы;
- определить показания вольтметров V_1 и V_2 ;
- рассчитать полную, активную и реактивную мощности, потребляемые данной цепью.

Схема электрической цепи

Предпоследняя цифра шифра	Схема
0	$u(t) \xrightarrow{i(t)} R_1 \qquad L_1 \\ R_2 \qquad R_3 \qquad V_2 \\ C_1 \qquad C_1 \qquad C_1$
1	$u(t)$ R_1 R_2 R_3 V_2 R_3 L_2
2	$u(t)$ V_1 C_1 V_2 C_1 C_1 C_2 C_1 C_2 C_1
3	$u(t) \qquad \qquad R_1 \qquad \qquad C_1 \qquad \qquad \\ U_1 \qquad \qquad R_2 \qquad \qquad V_2 \qquad \qquad \\ U_2 \qquad \qquad \\ Z_1 \qquad \qquad \\ Z_2 \qquad \qquad \\ Z_1 \qquad \qquad \\ Z_2 \qquad \qquad \\ Z_1 \qquad \qquad \\ Z_2 \qquad \qquad \\ Z_3 \qquad \qquad \\ Z_4 \qquad \qquad \\ Z_4 \qquad \qquad \\ Z_5 \qquad \qquad \\ Z_6 \qquad \qquad \\ Z_7 \qquad \qquad \\ Z_8 \qquad \qquad \\ Z_8 \qquad \qquad \\ Z_8 \qquad \qquad \\ Z_9 \qquad \\ Z_9 \qquad \qquad \\ Z_9$
4	$u(t) \downarrow V_1 \qquad R_2 \qquad C_1 \qquad \begin{cases} L_1 & V_2 \\ & & \end{cases}$
5	$u(t) = \begin{pmatrix} C_1 & R_1 \\ V_1 & R_2 \\ \end{pmatrix} \begin{pmatrix} V_2 & V_2 \\ \end{pmatrix} \begin{pmatrix} L_1 & L_2 \\ \end{pmatrix} \begin{pmatrix} L_1 & L$

Численные значения параметров элементов схемы и входного напряжения

Последняя цифра шифра	<i>R</i> ₁ , Ом	<i>R</i> ₂ , Ом	<i>R</i> ₃ , Ом	<i>L</i> ₁ , мГн	<i>L</i> ₂ , мГн	<i>C</i> ₁ , мкФ	<i>C</i> ₂ , мкФ	U_m , B	<i>f</i> , Гц
1	30	60	100	40	90	70	90	100	50
2	20	100	20	80	80	30	60	200	100
3	50	60	40	10	10	40	50	300	400
4	90	100	80	20	30	5	5	40	800
5	40	20	60	30	40	5	10	30	400
6	30	100	20	10	20	10	20	60	800
7	40	70	80	40	60	50	80	80	50
8	90	60	90	90	90	30	80	120	100
9	100	50	100	30	10	20	10	90	400
0	10	70	100	100	60	40	50	150	50

Задача №4. Расчет линейных электрических цепей постоянного тока методами контурных токов, узловых потенциалов и эквивалентного генератора.

Вариант задания выбирается студентом по двум последним цифрам зачетной книжки: номер схемы — по двум последним цифрам; номер численных данных — последняя цифра делится на 5 и остаток дает номер варианта, например, если в зачетной книжке шифр заканчивается цифрами 58, то из таблицы выбирается вариант схемы 56—60, и вариант 3 численных значений (остаток от деления 8 на 5 равен 3).

В вариантах заданий используется символическая запись, которая отображает конфигурацию схемы электрической цепи в логической форме, основанной на символах алгебры логики. Если в схеме начало и конец электрической цепи (см. рис. 3) обозначены буквами a и b, условно называемыми полюсами схемы, то логическое содержание этой цепи представляется в виде $a(R_1R_2\vec{E})b$. Направление ЭДС источника к полюсу задается стрелкой над символом E.

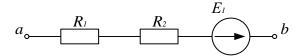


Рис. 3. Схема электрической цепи

Логическая форма представления электрической цепи, изображенной на рис. 4, запишется в виде $m(L_1 + C_1 + \overrightarrow{E_1})n$.

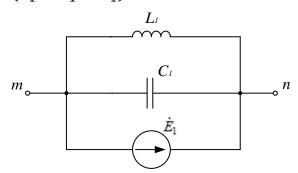


Рис. 4. Схема электрической цепи

Пример преобразования логического изображения схемы цепи в ее графическое изображение. Пусть схема электрической цепи задана в виде:

$$a(R_6 + R_2\overrightarrow{E_2}bR_4)dR_1\overleftarrow{E_1}c(R_5b + \overrightarrow{J_3}R_3)a.$$

Тогда графическое изображение схемы имеет вид:

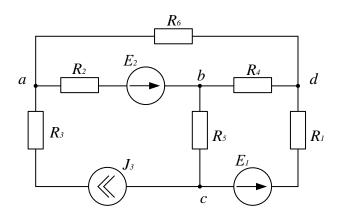


Рис. 5. Схема электрической цепи

В соответствии с вариантом задания необходимо:

- начертить схему электрической цепи с обозначениями узлов и элементов ветвей, соблюдая требования ЕСКД;
- определить и составить необходимое число уравнений по правилам Кирхгофа для определения токов во всех ветвях схемы (не решая систему);
- определить токи ветвей методами контурных токов и узловых потенциалов и свести их в таблицу;
- определить мощность на каждом элементе схемы и проверить баланс мощностей;
- определить ток первой ветви методом эквивалентного генератора.

Схема электрической цепи

Номер варианта	Схема
01 – 05	$a(R_1\overrightarrow{E_1} + R_3bR_4\overleftarrow{E_4})cR_2d(R_5b + R_6\overleftarrow{J_6})a$
06 – 10	$a(R_1 + R_3\overrightarrow{E_3}bR_4)cR_2\overrightarrow{E_2}d(R_6\overrightarrow{J_6}b + R_5)a$
11 – 15	$a(R_5\overrightarrow{E_5} + R_6\overrightarrow{J_6})bR_1c(R_3\overrightarrow{E_3} + R_4)dR_2a$
16 – 20	$a(R_1\overrightarrow{E_1} + R_2)cR_6\overrightarrow{J_6}d(R_3 + R_4\overrightarrow{E_4})bR_5a$
21 – 25	$a(R_5 + R_4bR_1)cR_6\overrightarrow{J_6}d(R_2\overrightarrow{E_2}b + R_3\overleftarrow{E_3})a$
26 – 30	$a(R_2\overrightarrow{E_2} + R_4b R_5\overrightarrow{E_5})dR_3c(R_6\overrightarrow{J_6}b + R_1)a$
31 – 35	$a(R_6\overrightarrow{J_6} + R_1b R_2\overleftarrow{E_2})cR_4d(R_3b + R_5\overrightarrow{E_5})a$
36 – 40	$a(R_3\overrightarrow{E_3} + R_2)bR_1\overrightarrow{E_1}d(R_6\overrightarrow{J_6} + R_4)cR_5a$
41 – 45	$a(R_2 + R_4 \overrightarrow{E_4} b R_3) c R_1 \overrightarrow{E_1} d(R_6 \overrightarrow{J_6} b + R_5) a$
46 – 50	$a(R_5 + R_6\overrightarrow{J_6}dR_3\overrightarrow{E_3})cR_4\overrightarrow{E_4}b(R_1d + R_2)a$
51 – 55	$a(R_1\overrightarrow{E_1} + R_4\overleftarrow{E_4}bR_3)cR_6\overrightarrow{J_6}d(R_2b + R_5)a$
56 – 60	$a(R_1 + R_5\overrightarrow{E_5})cR_3d(R_6\overrightarrow{J_6} + R_4)bR_2\overleftarrow{E_2}a$
61 – 65	$a(R_3\overrightarrow{E_3} + R_1\overleftarrow{E_1}bR_4)dR_6\overrightarrow{J_6}c(R_5b + R_2)a$
66 – 70	$a(R_6\overrightarrow{J_6} + R_4bR_3)cR_5\overrightarrow{E_5}d(R_2b + \overrightarrow{E_1}R_1)a$
71 – 75	$a(R_1 + \overrightarrow{J_6}R_6)bR_4\overrightarrow{E_4}d(R_3\overleftarrow{E_3} + R_2)cR_5a$
76 – 80	$a(R_5\overrightarrow{E_5} + R_6\overrightarrow{J_6})bR_1\overrightarrow{E_1}c(R_3 + R_4)dR_2a$

Номер варианта	Схема
81 – 85	$a(R_2 + R_1 \overrightarrow{E_1} b R_3 \overrightarrow{E_3}) c R_4 d(R_5 b + R_6 \overrightarrow{J_6}) a$
86 – 90	$a(R_6\overrightarrow{J_6} + R_3d R_1\overrightarrow{E_1})bR_3\overrightarrow{E_3}c(R_4d + R_2)a$
91 – 95	$a(R_6\overrightarrow{J_6} + R_5)bR_2\overleftarrow{E_2}c(R_1\overrightarrow{E_1} + R_4)dR_3a$
96 – 100	$a(R_3\overleftarrow{E_3} + R_1)bR_4\overrightarrow{E_4}c(R_6\overrightarrow{J_6} + R_2\overrightarrow{E_2})dR_5a$

Численные значения параметров элементов схемы

Вариант	Со	Сопротивления резисторов, Ом							ЭДС источников, В			
	$R_{\rm l}$	R_2	R_3	R_4	R_5	R_6	E_1	E_2	E_3	E_4	E_5	J_6
1 (6)	7	6	4	11	10	4	21	20	22	25	24	2
2 (7)	8	5	5	10	9	8	23	21	21	26	25	1
3 (8)	6	8	8	7	8	10	24	22	20	20	26	3
4 (9)	5	9	9	4	10	2	20	23	24	22	27	4
5 (10)	4	7	10	5	4	5	22	24	26	27	28	2

Задача №5. Применение законов Ома и Кирхгофа для расчета однофазных линейных электрических цепей синусоидального тока.

Вариант задания выбирается студентом по двум последним цифрам зачетной книжки: номер схемы — по двум последним цифрам; номер численных данных — последняя цифра делится на 5 и остаток дает номер варианта, например, если в зачетной книжке шифр заканчивается цифрами 58, то из таблицы выбирается вариант схемы 56—60, и вариант 3 численных значений (остаток от деления 8 на 5 равен 3).

В соответствии с вариантом задания необходимо:

- начертить схему электрической цепи с обозначениями узлов и элементов ветвей, соблюдая требования ЕСКД;
- определить и составить необходимое число уравнений по правилам Кирхгофа для определения токов во всех ветвях схемы (не решая систему);
- применив один из методов расчета, определить комплексные и действующие значения токов во всех ветвях схемы; записать выражения для мгновенных значений токов;
- определить комплексные потенциалы всех точек схемы и построить топографическую диаграмму цепи, совмещенную с векторной диаграммой токов;
- составить баланс мощностей в символической форме.

Схема электрической цепи

Номер варианта	Схема электрической цепи
01 – 05	$a\left(\overleftarrow{E_1'}C_1\overrightarrow{E_1''}+R_2L_2+\overrightarrow{E_3'}R_3C_3\right)b$

Номер варианта	Схема электрической цепи
06 – 10	$a\left(\overrightarrow{\dot{E}_1'}R_2L_2 + C_2\overrightarrow{\dot{E}_2'} + \overrightarrow{\dot{E}_3'}L_3R_3\right)b$
11 – 15	$a\left(R_1L_1C_1 + \overrightarrow{E_2'}L_2C_2 + \overleftarrow{E_3'}R_3\overrightarrow{E_3''}\right)b$
16 – 20	$a\left(L_{1}\overrightarrow{\dot{E}_{1}'}C_{1}+R_{2}L_{2}\overrightarrow{\dot{E}_{2}'}+\overleftarrow{\dot{E}_{3}'}C_{3}R_{3}\overrightarrow{\dot{E}_{3}''}\right)b$
21 – 25	$a\left(\overrightarrow{E_1'}R_1C_1 + \overrightarrow{E_2'}R_2\overrightarrow{E_2''} + L_3\overrightarrow{E_3'}C_3\right)b$
26 – 30	$a\left(\overrightarrow{E_1'}L_1\overrightarrow{E_1''} + \overrightarrow{E_2'}R_2L_2 + \overrightarrow{E_3'}C_3\overrightarrow{E_3''}\right)b$
31 – 35	$a\left(\overrightarrow{\dot{E_1'}}R_1\overrightarrow{\dot{E_1''}} + R_2C_2\overrightarrow{\dot{E_2'}} + \overrightarrow{\dot{E_3'}}C_3R_3\right)b$
36 – 40	$a\left(L_1C_1 + \overleftarrow{\dot{E_2'}}R_2L_2\overrightarrow{\dot{E_2''}} + \overrightarrow{\dot{E_3'}}R_3\right)b$
41 – 45	$a\left(R_1L_1\overrightarrow{E_1'}+R_2L_2C_2+\overleftarrow{E_3'}C_3\overrightarrow{E_3''}\right)b$
46 – 50	$a\left(C_1 \stackrel{\longleftrightarrow}{E_1'} \stackrel{\longleftrightarrow}{E_1''} + \stackrel{\longleftrightarrow}{E_2'} L_2 \stackrel{\longleftrightarrow}{E_2''} + R_3 L_3\right) b$
51 – 55	$a\left(L_1 \overrightarrow{E_1'} \overrightarrow{E_1''} + R_2 C_2 + R_3 L_3 \overrightarrow{E_3'}\right) b$
56 – 60	$a\left(R_1\overrightarrow{E_1'}C_1 + R_2L_2\overrightarrow{E_2'} + C_3\overrightarrow{E_3''}\right)b$
61 – 65	$a\left(R_1\overrightarrow{\dot{E}_1'}C_1 + \overrightarrow{\dot{E}_2'}L_2\overleftarrow{\dot{E}_2''} + L_3C_3\overrightarrow{\dot{E}_3'}\right)b$
66 – 70	$a\left(L_{1}\overleftarrow{\dot{E_{1}'}}R_{1}+R_{2}C_{2}\overrightarrow{\dot{E_{2}'}}+R_{3}L_{3}\overrightarrow{\dot{E_{3}'}}\right)b$
71 – 75	$a\left(L_{1}\overrightarrow{E_{1}'}R_{1}\overleftarrow{E_{1}''}+C_{2}\overrightarrow{E_{2}'}\overrightarrow{E_{2}''}+L_{3}R_{3}\right)b$
76 – 80	$a\left(\overrightarrow{E_1'}R_1\overrightarrow{E_1''}+R_2L_2+\overrightarrow{E_3'}R_3C_3\overrightarrow{E_3''}\right)b$
81 – 85	$a\left(\overrightarrow{\dot{E}_{1}'}L_{1}\overleftarrow{\dot{E}_{1}''}+L_{2}C_{2}+\overrightarrow{\dot{E}_{3}'}R_{3}C_{3}\right)b$
86 – 90	$a\left(L_{1}\overrightarrow{E_{1}'}C_{1}+L_{2}C_{2}R_{2}+\overleftarrow{E_{3}'}R_{3}\overrightarrow{E_{3}''}\right)b$
91 – 95	$a\left(C_1R_1\overrightarrow{E_1'} + \overrightarrow{E_2'}L_2\overleftarrow{E_2''} + \overrightarrow{E_3'}L_3C_3\right)b$
96 – 100	$a\left(\overleftarrow{\dot{E_1'}}\overrightarrow{E_1''}L_1 + R_2L_2C_2\overrightarrow{\dot{E_2'}} + \overrightarrow{\dot{E_3'}}C_3\overrightarrow{\dot{E_2''}}\right)b$

Численные значения параметров элементов схемы

Вариант	1	2	3	4	5
L ₁ , мГн	6	7	5	4	8
L ₂ , мГн	5	10	10	12	20
L ₃ , мГн	6	7	5	4	8
С ₁ , мкФ	10	5	7	6	8
С2, мкФ	7	10	6	5	7
С3, мкФ	10	5	7	6	8
R ₁ , Ом	30	20	40	60	50
R ₂ , Ом	10	5	20	40	10
R ₃ , Ом	50	80	40	70	60
$\dot{E}_{1}^{\prime},\mathrm{B}$	10e ^{j60°}	$14e^{j45^{\circ}}$	$80e^{j0^{\circ}}$	$25e^{j45^{\circ}}$	16e ^{j0°}
$\dot{E}_{1}^{\prime\prime},$ B	16e ^{j90°}	$20e^{j0^{\circ}}$	16e ^{j30°}	$100e^{j60^{\circ}}$	50e ^{j45°}
$\dot{E}_{2}^{\prime},\mathrm{B}$	$20e^{j0^{\circ}}$	$10e^{j60^{\circ}}$	$75e^{j0^{\circ}}$	$75e^{j0^{\circ}}$	50e ^{j30°}

Вариант	1	2	3	4	5
$\dot{E}_{2}^{\prime\prime},$ B	$30e^{j0^{\circ}}$	50e ^{j30°}	$80e^{j0^{\circ}}$	$25e^{j45^{\circ}}$	$16e^{j0^{\circ}}$
\dot{E}_3' , B	50e ^{j30°}	$50e^{j0^{\circ}}$	$25e^{j45^{\circ}}$	14e ^{j45°}	10e ^{j60°}
$\dot{E}_3^{\prime\prime},$ B	$50e^{j0^{\circ}}$	16e ^{j90°}	50e ^{j60°}	$60e^{j0^{\circ}}$	$20e^{j0^{\circ}}$
<i>f</i> , Гц	50	50	50	50	50

Задача №6. Расчет переходных процессов в электрических цепях.

Вариант задания выбирается студентом по двум последним цифрам зачетной книжки. При этом одним из элементов схемы является ключ, замыкание или размыкание которого, то есть коммутация, и вызывает переходный процесс. символу «K» соответствует разомкнутое состояние ключа до коммутации, символу «K» – замкнутое состояние ключа до коммутации.

Пример преобразования логического описания схемы в ее графическое изображение. Пусть схема электрической цепи задана в виде следующей записи $a(ER_1 + (R_2 + R_3\underline{K})L_1 + R_3C_1)b$. Тогда графическое изображение этой схемы имеет вид:

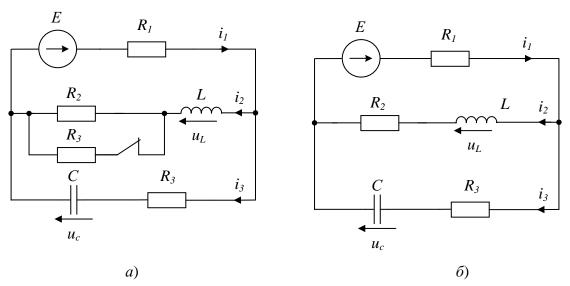


Рис. 6. Графическое изображение цепи: a – до коммутации, δ – после коммутации

В соответствии с заданным вариантом необходимо:

- начертить схему электрической цепи с обозначением узлов и элементов ветвей;
- рассчитать переходный процесс классическим методом, определив зависимости от времени мгновенных значений всех токов и напряжений на всех пассивных элементах;
- рассчитать переходный процесс операторным методом, результаты сравнить с результатами, полученными классическим методом;
- построить графики зависимостей от времени токов и напряжений на всех реактивных элементах схемы.

Схема электрической цепи

Вариант (последние две цифры шифра)	Схема электрической цепи
01 – 05	$a(ER_1K + R_2C_1 + L_1R_3)b$
06 – 10	$a(L_1R_1 + ER_3 + KC_1)b$
11 – 15	$a(R_3\underline{K} + ER_1 + R_3C_1 + L_1R_2)b$
16 – 20	$a(\underline{K} + L_1R_1 + C_1R_2 + ER_3)b$
21 – 25	$a(ER_1 + (R_2 + R_3\underline{K})L_1 + R_3C_1)b$
26 – 30	$a(L_1R_1 + EC_1K + R_3)b$
31 – 35	$a(R_1C_1 + R_2L_1K + ER_3)b$
36 – 40	$a(EL_1 + KR_3 + R_2C_1)b$
41 – 45	$a(R_1 + C_1L_1R_2 + ER_3K)b$
46 – 50	$a(C_1R_1 + ER_3 + L_1K)b$
51 – 55	$a(EKC_1 + R_1 + R_2C_2)b$
56 – 60	$a(ER_1L_1 + (K + R_2)L_2 + R_3)b$
61 – 65	$a(EC_1 + KR_1 + R_2C_2)b$
66 – 70	$a(R_1L_1K + ER_2 + R_3L_2)b$
71 – 75	$a(ER_1 + C_1 + (C_2 + \underline{K})R_2)b$
76 – 80	$a(\underline{K} + R_1L_1 + R_2L_2 + ER_3)b$
81 – 85	$a(ER_1 + C_1 + R_2C_2K)b$
86 – 90	$a(ER_3L_1 + R_2L_2 + R_1 + \underline{K})b$
91 – 95	$a(ER_1 + C_2R_2 + R_3\underline{K} + C_1)b$
96 – 00	$a(L_2R_1 + ER_2 + (R_3 + K)R_3L_1)b$

Численные значения параметров элементов схемы

Bapı	иант	R_1 ,	R_2 ,	R_3 ,	L_1 ,		L_2 ,	C_2 ,	Ε,
	едние	Ом	. К2, Ом	Ом	<i>L</i> 1, мГн	C_1 ,	<i>L</i> ₂ , мГн	мкФ	B
цифры	шифра)	OW	OW	OM	IVII II	мкФ	IVII II	MKT	Б
	1	1	1	100	10	10	5	15	30
	2	1	2	80	10	100	20	200	60
	3	100	1	2	5	3	1	100	120
	4	60	1	1	20	20	10	20	28
- 50	5	2	50	2	25	50	100	20	12
01	6	1	1	100	10	10	20	5	5
	7	10	2	40	100	10	10	5	12
	8	10	10	100	10	20	5	40	30
	9	10	80	5	10	25	40	50	28
	0	40	1	20	1	10	4	2	100
	1	10	200	10	10	100	5	15	12
	2	30	20	80	10	50	20	40	30
	3	100	200	20	5	200	1	100	120
00	4	60	100	10	20	50	10	20	100
I	5	20	50	20	25	50	100	20	60
51	6	10	10	10	25	10	20	5	5
	7	5	2	2	100	10	50	5	12
	8	10	1	5	50	20	35	40	9
	9	2	5	2	20	25	20	50	28

Bapı	иант	R_1 ,	R_2	R_2	I 1		La	C_2	F
	едние	Ом	<i>к</i> ₂ , Ом	<i>К</i> 3, Ом	<i>L</i> ₁ , мГн	<i>C</i> ₁ , мкФ	<i>L</i> ₂ , мГн	мкФ	B
цифры	шифра)					MKΨ			
	0	4	1	5	5	1	4	2	5

Защита лабораторных работ

В лабораторном практикуме по дисциплине представлен перечень лабораторных работ, обозначены цель и задачи, необходимые теоретические и методические указания к работе, приведен порядок выполнения работы, содержание отчета и перечень контрольных вопросов.

Защита лабораторных работ возможна после проверки правильности выполнения работы и оформления отчета. Защита проводится в форме собеседования преподавателя со студентом по теме лабораторной работы. Примерный перечень контрольных вопросов для защиты лабораторных работ представлен в таблице.

пред	ставлен в таблице.						
No॒	Тема лабораторной		Контрольные вопросы				
Π/Π	работы		•				
1	Исследование режимов	1.	Какое направление ЭДС, напряжения и тока считается				
	работы и методов расчета		положительным?				
	линейных электрических	2.	Как практически определить положительные				
	цепей постоянного тока с		направления ЭДС, тока и напряжения в электрической				
	двумя источниками ЭДС		цепи?				
		3.	Как формулируется закон Ома для участка цепи и для всей цепи?				
		4.	Какие режимы работы электрической цепи Вам известны?				
		5.	Как практически определить ЭДС источника и его				
			внутреннее сопротивление?				
		6.					
		7.	Какое соединение резисторов называется				
			последовательным, параллельным и смешанным?				
		8.	Как найти эквивалентные сопротивление и				
			проводимость при последовательном и параллельном				
			соединении резисторов?				
		9.	Как найти эквивалентное сопротивление мостовой				
		10	схемы?				
		10.	В чем состоит сущность метода контурных токов?				
		11.	Запишите уравнения баланса мощностей для заданной				
2	Оправанациа нараматар	1.	схемы электрической цепи. Что представляет собой синусоидальный ток, и какими				
2	Определение параметров электрической цепи	1.	величинами он характеризуется?				
	переменного тока с	2.	Что такое действующее значение тока? Как оно				
	последовательным	2.	определяется?				
	соединением катушки	3.	Что такое индуктивное и емкостное сопротивления и				
	индуктивности, резистора]	от чего они зависят?				
	и конденсатора. Резонанс	4.	Как вычисляется полное сопротивление				
	напряжений		неразветвленной цепи синусоидального тока?				
	•		<u> </u>				

№	Тема лабораторной		Контрольные вопросы
п/п	работы		• •
		5.	Как вычисляется действующее значение тока в цепи с последовательным соединением резистивного, емкостного и индуктивного элементов?
		6.	Какие виды мощности в цепях синусоидального тока Вам известны? Что они характеризуют и как
		7.	рассчитываются? Что такое коэффициент мощности цепи синусоидального тока и почему нужно стремиться к его повышению при потреблении электрической
		8.	энергии? При каком условии возникает резонанс напряжений в цепи синусоидального тока? Чем характеризуется это
		9.	явление? Объясните, какую опасность может представлять резонанс напряжений в электрических цепях?
		10.	Каким должно быть соотношение индуктивного и емкостного сопротивлений, чтобы ток в цепи опережал напряжение? Поясните это при помощи
		11.	векторной диаграммы. В цепи синусоидального тока частотой $f = 50 \Gamma$ ц с последовательно включенными катушкой и конденсатором имеет место резонанс. Определить
		12.	напряжение на катушке и конденсаторе, если $U=20~B$, $R=10~Om,~C=1~mk\Phi$. Вычислить индуктивность катушки. В чем состоит сущность комплексного метода расчета электрических цепей синусоидального тока? Какие формы представления комплексных чисел Вам
			известны?
3	Определение параметров и исследование режимов работы трехфазной	1.	Почему наибольшее распространение в электроэнергетике получили трехфазные электрические цепи?
	электрической цепи при соединении потребителей звездой	2. 3.	Запишите уравнения трехфазной системы ЭДС во временной и комплексной форме. Начертите схему соединения потребителей звездой.
	эвсэдон	<i>J</i> .	Как согласно нормативам, обозначаются фазные проводники?
		4.	Какая нагрузка называется симметричной, равномерной и несимметричной? Что понимается под симметричной трехфазной системой ЭДС?
		5.	Какие напряжения и токи называются линейными и фазными? Каковы соотношения между ними при соединении звездой?
		6.	Начертите векторные диаграммы напряжений и токов при соединении звездой в случае симметричной

No	Тема лабораторной		V averna ve vez pavna ave
Π/Π	работы		Контрольные вопросы
			нагрузки.
		7.	Начертите векторные диаграммы токов и напряжений
			при соединении звездой в случае несимметричной
			нагрузки.
		8.	Какова роль нейтрального провода при соединении
			нагрузки звездой?
		9.	Как рассчитываются токи в фазах при
			несимметричной нагрузке, соединенной звездой без
			нейтрального провода?
4	Исследование процесса	1.	Какой режим работы электрической цепи называют
	зарядки конденсатора от		переходным процессом? Назовите основные причины
	источника постоянного		возникновения переходных процессов.
	напряжения при	2.	Сформулируйте законы коммутации. Объясните их
	ограничении тока с		природу.
	помощью резистора	3.	Сформулируйте законы коммутации для схем с
			некорректной коммутацией. Начертите эти схемы.
		4.	Как изменяется напряжение на конденсаторе при его
			зарядке от источника постоянного напряжения через
			ограничивающий резистор?
		5.	Как изменяется напряжение на конденсаторе при его
			разрядке на ограничивающий резистор?
		6.	Как влияет изменение напряжения источника питания
			на процесс зарядки конденсатора при неизменных
			параметрах схемы?
		7.	Как влияет изменение сопротивления
			ограничивающего резистора на процесс зарядки
			конденсатора при неизменном напряжении источника
			питания?
		8.	Как графически определить постоянную времени
			зарядки или разрядки конденсатора? Каким
			соотношением связаны длительность переходного
			процесса и постоянная времени цепи?
		9.	Объясните работу схемы, исследуемой в лабораторной
			работе.

Примеры типовых вопросов для защиты ИДЗ

- 1. Условные графические обозначения основных элементов на схемах электрических цепей.
- 2. Связь между током и напряжением на основных элементах электрической цепи.
- 3. Сущность метода контурных токов при расчете схемы электрической цепи.
- 4. Сущность метода узловых напряжений при расчете схемы электрической цепи.
- 5. Сущность метода эквивалентного генератора при расчете схемы

- электрической цепи.
- 6. Применение баланса мощностей для проверки правильности расчета схемы электрической цепи.
- 7. Источники ЭДС и тока, характеристики и особенности.
- 8. Особенности применения метода контурных токов в электрических цепях с источниками тока.
- 9. Особенности применения метода узловых напряжений в электрических цепях с источниками тока.
- 10. Особенности применения баланса мощностей в электрических цепях с источниками тока.

5.4. Описание критериев оценивания компетенций и шкалы оценивания

При промежуточной аттестации в форме дифференцированного зачета используется следующая шкала оценивания: 2 — неудовлетворительно, 3 — удовлетворительно, 4 — хорошо, 5 — отлично.

Критериями оценивания достижений показателей являются:

Наименование	Критерий оценивания
показателя оценивания	
результата обучения по	
дисциплине	
Знания	Знание терминов, понятий, законов и методов расчета схем
	электрических цепей
	Объем освоенного материала
	Полнота ответов на вопросы
	Четкость изложения и интерпретации знаний
Умения	Выбор метода расчета электрической цепи на основе анализа
	принципиальной электрической схемы
	Расчет электрической цепи выбранным методом
	Проверка правильности расчета электрической цепи, анализ
	полученных результатов
Навыки	Сборка электрической цепи, руководствуясь принципиальными
	электрическими схемами.
	Выбор технических средств, проведение измерений
	электрических величин, анализ полученных результатов

Оценка сформированности компетенций по показателю Знания.

Критерий	Уровень освоения и оценка						
	2	3	4	5			
Знание терминов,	Не знает	Знает термины и	Знает термины,	Знает термины,			
понятий, законов и	терминов,	определения, но	понятия, законы	понятия, законы и			
методов расчета схем	понятий, законов	допускает	и методы	методы расчета			
электрических цепей	и методов расчета	неточности при	расчета схем	схем			
	схем	описании	электрических	электрических			
	электрических	методов расчета	цепей	цепей,			
	цепей	схем		самостоятельно и			
		электрических		корректно			
		цепей		сформулировать			
				их применительно			

Критерий	Уровень освоения и оценка			
	2	3	4	5
				к схемам произвольной топологии
Объем освоенного материала	Не знает значительной части материала дисциплины	Знает только основной материал дисциплины, не усвоил его деталей	Знает материал дисциплины в достаточном объеме	Обладает твердым и полным знанием материала дисциплины, владеет дополнительными знаниями
Полнота ответов на вопросы	Не дает ответы на большинство вопросов	Дает неполные ответы на все вопросы	Дает ответы на вопросы, но не все - полные	Дает полные, развернутые ответы на поставленные вопросы
Четкость изложения и интерпретации знаний	Излагает знания без логической последовательнос ти; не иллюстрирует изложение поясняющими схемами, рисунками и примерами; неверно излагает и интерпретирует знания	Излагает знания с нарушениями в логической последовательно сти; выполняет поясняющие схемы и рисунки небрежно и с ошибками; допускает неточности в изложении и интерпретации знаний	Излагает знания без нарушений в логической последовательно сти; ыполняет поясняющие рисунки и схемы корректно и понятно; грамотно и по существу излагает знания	Излагает знания в логической последовательнос ти, самостоятельно их интерпретируя и анализируя; выполняет поясняющие рисунки и схемы точно и аккуратно, раскрывая полноту усвоенных знаний; грамотно и точно излагает знания, делает самостоятельные выводы

Оценка сформированности компетенций по показателю Умения.

Критерий	Уровень освоения и оценка				
	2	3	4	5	
Выбор метода	Не умеет	Выбирает метод	Выбирает метод	Анализирует	
расчета	выбирать метод	расчета расчета		принципиальную	
электрической цепи	расчета	электрической	электрической	электрическую	
на основе анализа	электрической	цепи с	цепи на основе	схему и выбирает	
принципиальной	цепи, не умеет	подсказкой,	анализа, но	наиболее	
электрической схемы	анализировать	анализирует	число уравнений	эффективный для	
	принципиальную	принципиальну при этом		поставленной	
	электрическую	Ю	получается	задачи метод	
	схему	электрическую	неоптимальным	расчета	
		схему, но		электрической	
		допускает		цепи	
		непринципиальн			
		ые ошибки			
Расчет	Не умеет	Выполняет	Выполняет	Выполняет расчет	
электрической цепи	выполнять расчет	расчет токов в	расчет токов в	токов в ветвях	
выбранным методом	токов в ветвях	ветвях	ветвях	электрических	

Критерий	Уровень освоения и оценка				
	2	3	4	5	
	электрических цепей постоянного и переменного тока ни одним из методов; не умеет рассчитывать трехфазные электрической цепи при различном характере нагрузки в нормальном и	электрических цепей постоянного и переменного тока выбранным методом, но при этом использует неподходящий инструментарий	электрических цепей постоянного и переменного тока выбранным методом; умеет рассчитывать трехфазные электрические цепи при различном характере нагрузки только нормальном	цепей постоянного и переменного тока выбранным методом; умеет рассчитывать трехфазные электрические цепи при различном характере нагрузки в нормальном и аварийном	
Прородуя	аварийном режимах		режиме	режимах	
Проверка правильности расчета электрической цепи, анализ полученных результатов	проверки правильности расчета электрический цепи, не способен анализировать полученные результаты и выявлять ошибки в расчетах	Выполняет проверку правильности расчета электрической цепи, но не может выполнять анализ полученных результатов	Выполняет проверку правильности расчета электрической цепи методом баланса мощностей и выполняет анализ полученных результатов	Выполняет проверку правильности расчета электрической цепи, составляет баланс мощности для цепей постоянного и переменного тока, анализирует полученных результатов, определяет погрешность расчетов	

Оценка сформированности компетенций по показателю Навыки.

Критерий	Уровень освоения и оценка				
	2	3	4	5	
Сборка	Не знает	Знает условные	Знает условные	Без труда читает	
электрической цепи,	условных	обозначений	обозначений	принципиальные	
руководствуясь	обозначений	элементов	элементов	электрические	
принципиальными	элементов	электрических	электрических	схемы, без труда	
электрическими	электрических	цепей, умеет	цепей, умеет	выполняет сборку	
схемами.	цепей, не умеет	читать	читать	электрических	
	читать	принципиальные	принципиальные	цепей, проверяет	
	принципиальные	схемы, собирает	схемы, собирает	ИХ	
	схемы, не имеет	схемы	схемы	работоспособност	
	навыка сборки	электрических	электрических	Ь	
	электрических	цепей с	цепей		
	цепей	подсказкой			
Выбор технических	Не знает	Знает	Знает	Знает	
средств, проведение	особенностей	особенности	особенности	особенности	
измерений	технических	технических	технических	технических	
электрических	средств измерения	средств	средств	средств	
величин, анализ	электрических	измерения	измерения	измерения	
полученных	величин, не умеет	электрических	электрических	электрических	
результатов	выбирать и	величин, не	величин, умеет	величин, владеет	
	подключать	умеет выбирать	выбирать и	навыками	

Критерий	Уровень освоения и оценка				
	2	3	4	5	
	электроизмерител	но умеет	подключать	применения	
	ьные приборы	подключать	электроизмерите	электроизмерител	
		электроизмерите	льные приборы	ьных приборов;	
		льные приборы		умеет	
				анализировать	
				полученные	
				результаты	
				измерений и	
				сопоставлять их с	
				расчетными	
				значениями	

Оценка преподавателем выставляется интегрально с учётом всех показателей и критериев оценивания.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

6.1. Материально-техническое обеспечение

№	Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы		
1	Учебная аудитория для проведения лекционных занятий	Специализированная мебель; мультимедийный проектор, переносной экран, ноутбук		
2	Лаборатория электротехники и электроники	Специализированная мебель; мультимедийный проектор, компьютер; универсальные учебные стенды по электротехнике и основам электроники НТЦ – 01.00.000, осциллографы: GOS-620, GRS-6052A, цифровые вольтметры: B7-38, Э515 №53909, цифровые мультиметры М890D, амперметры Э525, Э514, генераторы ГЗ-112/1, ГЗ-102, усилители: ГЗ112/1, информационные стенды		
4	Читальный зал библиотеки для самостоятельной работы	Специализированная мебель; компьютерная техника, подключенная к сети «Интернет», имеющая доступ в электронную информационнообразовательную среду		

6.2. Лицензионное и свободно распространяемое программное обеспечение

No	Перечень лицензионного	Реквизиты подтверждающего документа
	программного обеспечения.	
1	Microsoft Windows 10	Соглашение Microsoft Open Value Subscription
	Корпоративная	V6328633. Соглашение действительно с 02.10.2017
		по 31.10.2023). Договор поставки ПО
		0326100004117000038-0003147-01 от 06.10.2017
2	Microsoft Office Professional Plus	Соглашение Microsoft Open Value Subscription
	2016	V6328633. Соглашение действительно с 02.10.2017
		по 31.10.2023
3	Kaspersky Endpoint Security	Сублицензионный договор № 102 от 24.05.2018.
	«Стандартный Russian Edition»	Срок действия лицензии до 19.08.2020

No	Перечень лицензионного	Реквизиты подтверждающего документа				
	программного обеспечения.					
		Гражданско-правовой Договор (Контракт) № 27782				
		«Поставка продления права пользования				
		(лицензии) Kaspersky Endpoint Security от				
		03.06.2020. Срок действия лицензии 19.08.2022г.				
4	Google Chrome	Свободно распространяемое ПО согласно условиям				
		лицензионного соглашения				
5	PTC MathCad Prime 4.0 Express	Бесплатная ознакомительная версия				
6	SMath Studio 0.98 (сборка 6484)	Свободно распространяемое ПО согласно условиям				
		лицензионного соглашения				

6.3. Перечень учебных изданий и учебно-методических материалов

- 1. Батура М.П. Теория электрических цепей [Электронный ресурс] : учебник / М.П. Батура, А.П. Кузнецов, А.П. Курулев. Электрон. текстовые данные. Минск: Вышэйшая школа, 2015. 607 с. 978-985-06-2562-5. Режим доступа: http://www.iprbookshop.ru/52136.html
- 2. Белоусов А.В. Электротехника и электроника [Электронный ресурс] : учебное пособие / А.В. Белоусов. Электрон. текстовые данные. Белгород: Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2015. 185 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/66690.html
- 3. Теоретические основы электротехники. Часть 1. Установившиеся режимы в линейных электрических цепях [Электронный ресурс] : учебное пособие / В.М. Дмитриев [и др.]. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2015. 189 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/72189.html
- 4. Расчет разветвленной электрической цепи синусоидального тока с несколькими источниками ЭДС в установившемся режиме: методические указания к выполнению расчетно-графической работы по дисциплине электротехника / сост.: А.С. Солдатенков, О.В. Паращук. Белгород: Изд-во БГТУ, 2015. 107 с.
- 5. Алиев И.И. Электротехника и электрооборудование [Электронный ресурс] : справочник. Учебное пособие для вузов / И.И. Алиев. Электрон. текстовые данные. Саратов: Вузовское образование, 2014. 1199 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/9654.html
- 6. Быковская Л.В. Трёхфазные цепи [Электронный ресурс] : учебное пособие / Л.В. Быковская, Н.Ю. Ушакова. Электрон. текстовые данные. Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2015. 112 с. 978-5-7410-1214-7. Режим доступа: http://www.iprbookshop.ru/52337.html

7. Гордеев-Бургвиц М.А. Общая электротехника и электроснабжение [Электронный ресурс] : учебное пособие / М.А. Гордеев-Бургвиц. — Электрон. текстовые данные. — М. : Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2017. — 470 с. — 978-5-7264-1602-1. — Режим доступа: http://www.iprbookshop.ru/65651.html

6.4. Перечень интернет ресурсов, профессиональных баз данных, информационно-справочных систем

- 1. Единое окно доступа к информационным ресурсам. Теоретическая электротехника [Электронный ресурс]. Режим доступа: http://window.edu.ru/catalog/resources?p_rubr=2.2.75.30.7. Заглавие с экрана.
- 2. Электрик-PRO. Информационный ресурс посвящённый теме электричества, электрической энергии, профессии электрика, электротехнике и т.п. [Электронный ресурс]. Режим доступа: http://electrikpro.ru/index.php Заглавие с экрана.
- 3. Электрик-Инфо [Электронный ресурс].- Режим доступа: http://electrik.info/ Заглавие с экрана.
- 4. Онлайн Электрик [Электронный ресурс].- Режим доступа: http://online-electric.ru Заглавие с экрана.
- 5. ВЕСТИ В ЭЛЕКТРОЭНЕРГЕТИКЕ [Электронный ресурс].- Режим доступа: http://vesti.energy-journals.ru/ Заглавие с экрана.
- 6. Промышленная энергетика [Электронный ресурс].- Режим доступа: http://www.promen.energy-journals.ru/index.php/PROMEN Заглавие с экрана.
- 7. Энергетик [Электронный ресурс]. Режим доступа: http://energy-journals.ru/journals/energetik/ Заглавие с экрана.
- 8. Интеллектуальный центр научная библиотека им. Е.И. Овсянкина [Электронный ресурс]. Режим доступа: http://library.narfu.ru/rus/EResources/predmet-ukaz-el-res/Pages/elektroenergetika.aspx Заглавие с экрана.

7. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Рабочая	программа	утверждена	на	20	/20	учебный	год
без изменений /	с изменениям	ии, дополнени	ями				
Протокол	№	заседания каф	едры	от «	<u> </u>	20	г.
Заведующ	ий кафедрой					А.В. Белоусс)B
Директор	института					А.В. Белоусс	ЭВ