#### МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

# «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г. Шухова)

СОГЛАСОВАНО **УТВЕРЖДАЮ** Директор института заочного Директор института образования С.Е. Спесивцева 20 Mr. 2021 г. РАБОЧАЯ ПРОГРАММА дисциплины (модуля) Теоретическая механика (наименование дисциплины, модуля) специальность:

23.05.06 «Строительство железных дорог, мостов и транспортных тоннелей» (шифр и наименование направления бакалавриата, магистра, специальности)

#### специализация:

Строительство дорог промышленного транспорта (наименование образовательной программы (профиль, специализация)

Квалификация

Инженер путей сообщения (бакалавр, магистр, специалист)

Форма обучения

Заочная (очная, заочная и др.)

Инженерно-строительный Институт:

Кафедра: Теоретической механики и сопротивления материалов

| Рабочая программа составлена на основании требований:                               |                         |
|-------------------------------------------------------------------------------------|-------------------------|
| Федерального государственного образовательного                                      | стандарта               |
| высшего образования по направлению подготовки                                       | 23.05.06                |
| «Строительство железных дорог, мостов и транспортных                                |                         |
| (уровень высшего образования специалитет) утвер                                     |                         |
|                                                                                     | оссийской               |
| Федерации от 27 марта 2018 года № 218 (редакция от 08                               |                         |
| 2021 года)                                                                          |                         |
| учебного плана, утвержденного ученым советом им. В.Г. Шухова в 2021 году.           | м БГТУ                  |
| Составитель (составители): к.т.н., доц. (А.Н. доцись) (инициали                     | Дегтярь)<br>ы, фамилия) |
| Рабочая программа обсуждена на заседании кафедры                                    |                         |
| « <u>12</u> » <u>мал 2021</u> г., протокол № <u>8</u>                               |                         |
| Заведующий кафедрой: к.т.н., доц. (А.Н. Де                                          | егтярь)<br>ы, фамилия)  |
|                                                                                     |                         |
| Рабочая программа согласована с выпускающей (ими) кафедрой (ам                      | ии)                     |
| Автомобильных и железных дорог                                                      |                         |
| (наименование кафедры/кафедр)                                                       |                         |
| Заведующий кафедрой: к.т.н., доц. (Е.А. Ученая степень и звание, подмусь) (инициали | Яковлев)<br>ы, фамилия) |
| « <u>15</u> » <u>05</u> <u>2021</u> г.                                              |                         |
| Рабочая программа одобрена методической комиссией института                         |                         |
| « <u>20</u> » <u>05</u> <u>2</u> 0 <i>Ш</i> г., протокол № <u>10</u>                |                         |
| Председатель к.т.н., доц (А.Ю. Фео                                                  | ктистов)                |
| (ученая степень и звание, подпись) (инициалы, ф                                     |                         |
| 그렇게 하는 이 그들이 내려왔다는 사람이 하면 되었다. 하는 사람들은 사람들이 되는 것이다.                                 |                         |
| 그 사람들이 그리다는 그 사람들은 사람들이 모르는 사람들이 가지 않는 것이 되었다. 그리는 사람들이 되었다.                        |                         |

# 1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

| T.C.                                 |                                                                                                      | Код и наименование                                                                                                                                | Наименование показателя                                                                                                                  |
|--------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Категория                            | Код и наименование                                                                                   | индикатора                                                                                                                                        | оценивания результата обучения                                                                                                           |
| (группа)                             | компетенции                                                                                          | достижения                                                                                                                                        | по дисциплине                                                                                                                            |
| компетенций                          |                                                                                                      | компетенции                                                                                                                                       |                                                                                                                                          |
| Проектирование транспортных объектов | ОПК-4 Способен выполнять проектирование и расчет транспортных объектов в соответствии с требованиями | ОПК-4.3. Определяет силы реакций, действующих на тело, скорости ускорения точек тела в различных видах движений, анализирует кинематические схемы | Знать: Основные модели механики (модель материальной точки, системы материальных точек, абсолютно твердого тела, системы взаимосвязанных |
|                                      | нормативных                                                                                          | механических систем                                                                                                                               | твердых тел);                                                                                                                            |
|                                      | документов                                                                                           |                                                                                                                                                   | Уметь:                                                                                                                                   |
|                                      |                                                                                                      |                                                                                                                                                   | Применять основные модели                                                                                                                |
|                                      |                                                                                                      |                                                                                                                                                   | механики для моделирования                                                                                                               |
|                                      |                                                                                                      |                                                                                                                                                   | и теоретического                                                                                                                         |
|                                      |                                                                                                      |                                                                                                                                                   | исследования Владеть:                                                                                                                    |
|                                      |                                                                                                      |                                                                                                                                                   | _ '_ '                                                                                                                                   |
|                                      |                                                                                                      |                                                                                                                                                   | Методами моделирования задач механики.                                                                                                   |
|                                      |                                                                                                      | ОПК-4.4. Применяет                                                                                                                                | Знать: Основные законы                                                                                                                   |
|                                      |                                                                                                      | законы механики для                                                                                                                               | механики и важнейшие                                                                                                                     |
|                                      |                                                                                                      | выполнения                                                                                                                                        | следствия из них; методы                                                                                                                 |
|                                      |                                                                                                      | проектирования и расчета транспортных объектов                                                                                                    | решения задач механики                                                                                                                   |
|                                      |                                                                                                      | транепортных оовектов                                                                                                                             | Уметь: Применять                                                                                                                         |
|                                      |                                                                                                      |                                                                                                                                                   | полученные знания к решению                                                                                                              |
|                                      |                                                                                                      |                                                                                                                                                   | задач статики, кинематики и                                                                                                              |
|                                      |                                                                                                      |                                                                                                                                                   | динамики; анализировать                                                                                                                  |
|                                      |                                                                                                      |                                                                                                                                                   | полученные результаты                                                                                                                    |
|                                      |                                                                                                      |                                                                                                                                                   | Владеть: методами и                                                                                                                      |
|                                      |                                                                                                      |                                                                                                                                                   | принципами решения задач                                                                                                                 |
|                                      |                                                                                                      |                                                                                                                                                   | механики                                                                                                                                 |

# 2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

**1. Компетенция** <u>ОПК-4</u> <u>Способен выполнять проектирование и расчет транспортных объектов в соответствии с требованиями нормативных документов</u>

Данная компетенция формируется следующими дисциплинами.

| Стадия | Наименования дисциплины                                        |
|--------|----------------------------------------------------------------|
| 1.     | Начертательная геометрия и компьютерная графика                |
| 2.     | Теоретическая механика                                         |
| 3.     | Основы теории надежности                                       |
| 4.     | Инженерная геология                                            |
| 5.     | Гидравлика и гидрология                                        |
| 6.     | Строительные материалы                                         |
| 7.     | Железнодорожный путь                                           |
| 8.     | Мосты на железных дорогах                                      |
| 9.     | Тоннели на транспортных магистралях                            |
| 10.    | Строительные конструкции и архитектура транспортных сооружений |
| 11.    | Строительная механика                                          |
| 12.    | Механика грунтов, основания и фундаменты                       |
| 13.    | Изыскания и проектирование железных дорог                      |
| 14.    | Информационные технологии в строительстве                      |
| 15.    | Выполнение и защита выпускной квалификационной работы          |

## 3. ОБЪЕМ ДИСЦИПЛИНЫ

| Общая трудоемкость дисциплины со | оставляет <u>7</u> | _ зач. единиц,      | <u>252</u> часов. |
|----------------------------------|--------------------|---------------------|-------------------|
| Форма промежуточной аттестации   |                    |                     |                   |
|                                  | (экзамен           | , дифференцированны | ій зачет, зачет)  |

| Вид учебной работы <sup>1</sup>        | Всего часов | Семестр<br>№ 2 | Семестр<br>№ 3 |
|----------------------------------------|-------------|----------------|----------------|
| Общая трудоемкость дисциплины, час     | 252         | 109            | 143            |
| Контактная работа (аудиторные          | 12          | 7              | 5              |
| занятия), в т.ч.:                      |             |                |                |
| лекции                                 | 6           | 4              | 2              |
| лабораторные                           |             |                |                |
| практические                           | 4           | 2              | 2              |
| групповые консультации в период        | 2           | 1              | 1              |
| теоретического обучения и              |             |                |                |
| промежуточной аттестации <sup>2</sup>  |             |                |                |
| Самостоятельная работа студентов,      | 240         | 102            | 138            |
| включая индивидуальные и групповые     |             |                |                |
| консультации, в том числе:             |             |                |                |
| Курсовой проект                        |             |                |                |
| Курсовая работа                        |             |                |                |
| Расчетно-графическое задание           | 18          | 18             |                |
| Индивидуальное домашнее задание        | 9           |                | 9              |
| Самостоятельная работа на подготовку к | 177         | 84             | 93             |
| аудиторным занятиям (лекции,           |             |                |                |
| практические занятия, лабораторные     |             |                |                |
| занятия)                               |             |                |                |
| Экзамен                                | 36          |                | 36             |

в соответствии с ЛНА предусматривать

<sup>-</sup> не менее 0,5 академического часа самостоятельной работы на 1 час лекций,

<sup>-</sup> не менее 1 академического часа самостоятельной работы на 1 час лабораторных и практических занятий,

<sup>- 36</sup> академических часов самостоятельной работы на 1 экзамен

 <sup>54</sup> академических часов самостоятельной работы на 1 курсовой проект, включая подготовку проекта, индивидуальные консультации и защиту

 <sup>36</sup> академических часов самостоятельной работы на 1 курсовую работу, включая подготовку работы, индивидуальные консультации и защиту

<sup>– 18</sup> академических часов самостоятельной работы на 1 расчетно-графическую работу, включая подготовку работы, индивидуальные консультации и защиту

 <sup>9</sup> академических часов самостоятельной работы на 1 индивидуальное домашнее задание, включая подготовку задания, индивидуальные консультации и защиту

<sup>-</sup> не менее 2 академических часов самостоятельной работы на консультации в период теоретического обучения и промежуточной аттестации

<sup>&</sup>lt;sup>2</sup> включают предэкзаменационные консультации (при наличии), а также текущие консультации из расчета 10% от лекционных часов (приводятся к целому числу)

# 4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

# 4.1 Наименование тем, их содержание и объем Курс1 Семестр 2

|                 |                                                                                                                                                                                                                                                                                               |        | ем на т<br>ел по ві<br>нагруз |                         | небной                                                                  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|-------------------------|-------------------------------------------------------------------------|
| <b>№</b><br>п/п | Наименование раздела<br>(краткое содержание)                                                                                                                                                                                                                                                  | Лекции | Практические<br>занятия       | Лабораторные<br>занятия | Самостоятельная работа на подготовку к аудиторным занятиям <sup>3</sup> |
| 1. (            | СТАТИКА                                                                                                                                                                                                                                                                                       |        |                               |                         |                                                                         |
|                 | ВВЕДЕНИЕ. Основные понятия и определения. Основные аксиомы статики. Задачи статики. Типы связей и их реакции.                                                                                                                                                                                 | 0,25   |                               |                         | 4                                                                       |
|                 | СИСТЕМА СХОДЯЩИХСЯ СИЛ                                                                                                                                                                                                                                                                        | 0,25   |                               |                         | 5                                                                       |
|                 | Сложение сходящихся сил. Геометрический способ сложения сил. Проекция силы на ось и на плоскость. Теорема о проекции вектора                                                                                                                                                                  |        |                               |                         |                                                                         |
|                 | суммы на ось. Аналитический способ сложения сил. Равнодействующая сходящейся системы                                                                                                                                                                                                          |        |                               |                         |                                                                         |
|                 | сил. Геометрические и аналитические условия равновесия сходящихся сил на плоскости и в пространстве.                                                                                                                                                                                          |        |                               |                         |                                                                         |
|                 | Теорема о трех непараллельных силах. Системы статически определимые и неопределимые. Решение задач статики.                                                                                                                                                                                   |        |                               |                         | 5                                                                       |
|                 | СИСТЕМА ПАРАЛЛЕЛЬНЫХ СИЛ. ТЕОРИЯ<br>ПАР СИЛ                                                                                                                                                                                                                                                   | 0,25   |                               | 0,5                     | 5                                                                       |
|                 | Момент силы относительно центра. Свойства момента силы. Центр параллельных сил. Сложение параллельных сил. Сосредоточенные силы и распределенные нагрузки. Пара сил. Момент пары. Теоремы об эквивалентности и о сложении пар. Условие равновесия плоской системы сил. Равновесие системы тел |        |                               |                         |                                                                         |
|                 | Понятие о ферме. Методы расчета плоских ферм. Определение усилий в стержнях фермы методом вырезания узлов и методом сечений (метод Риттера).                                                                                                                                                  | 0,25   |                               |                         | 5                                                                       |

\_

<sup>&</sup>lt;sup>3</sup> Указать объем часов самостоятельной работы для подготовки к лекционным, практическим, лабораторным занятиям

| СИСТЕМА СИЛ, ПРОИЗВОЛЬНО<br>РАСПОЛОЖЕННЫХ В ПРОСТРАНСТВЕ                                                                                                                                                                                                                | 0,25 |      | 5 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---|
| Момент силы относительно оси. Теорема Вариньона о моменте равнодействующей. Теорема о параллельном переносе силы (тасрема Пурука)                                                                                                                                       |      |      |   |
| (теорема Пуансона).  Приведение системы сил к одному центру. Главный вектор и главный момент системы. Вычисление главного вектора и главного момента системы. Частные случаи:                                                                                           | 0,23 |      | 5 |
| равнодействующая, пара сил, динамический винт (динама).                                                                                                                                                                                                                 |      |      |   |
| Аналитические условия равновесия произвольной системы сил. Условия равновесия пространственной системы параллельных сил                                                                                                                                                 | 0,23 | 0,5  | 5 |
| ТРЕНИЕ Трение скольжения, трение качения, угол трения, условия равновесия произвольной системы сил при наличии трения                                                                                                                                                   |      |      | 5 |
| 2.                                                                                                                                                                                                                                                                      |      |      |   |
| КИНЕМАТИКА ТОЧКИ                                                                                                                                                                                                                                                        | 0,25 | 0,25 | 5 |
| Предмет кинематики. Система отсчета. Задачи кинематики. Способы задания движения точки: векторный, координатный и естественный. Уравнения движения точки и пройденный путь. Определение траектории точки. Скорость точки при различных способах задания движения точки. |      | 3,20 |   |
| Ускорение точки при векторном и координатном способах задания движения. Оси естественного трехгранника. Касательное и нормальное ускорения. Частные случаи движения точки. Графики движения, скорости и ускорения точки.                                                | 0,23 | 0,25 | 5 |
| КИНЕМАТИКА ТВЕРДОГО ТЕЛА.<br>ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ ТЕЛА<br>Поступательное движение. Теорема о                                                                                                                                                                         | 0,25 |      | 5 |
| свойствах поступательного движения.<br>Уравнения поступательного движения.                                                                                                                                                                                              |      |      |   |
| ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТЕЛА Вращательное движение. Уравнение движения. Угловая скорость и угловое ускорение тела. Законы равномерного и равнопеременного вращений. Скорость и ускорение точки тела.                                                                      |      | 0,25 | 5 |

|                                             | ı    | 1 | ı    |    |
|---------------------------------------------|------|---|------|----|
| Передаточные механизмы.                     |      |   |      |    |
| ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ                 | 0,25 |   |      | 5  |
| ТВЕРДОГО ТЕЛА                               |      |   |      |    |
| Плоское движение тела. Уравнения движения.  |      |   |      |    |
| Разложение плоского движения на             |      |   |      |    |
| поступательное и вращательное. Теорема      |      |   |      |    |
| сложения скоростей точек плоской фигуры.    |      |   |      |    |
|                                             |      |   |      |    |
| Теорема о проекциях скоростей двух точек    | 0.25 |   |      | ~  |
| плоской фигуры. Мгновенный центр скоростей  | 0,25 |   |      | 5  |
| (МЦС). Определение скоростей точек с        |      |   |      |    |
| помощью МЦС. Частные случаи определения     |      |   |      |    |
| МЦС.                                        |      |   |      |    |
| Теорема сложения ускорений точек плоской    |      |   |      |    |
| фигуры. Мгновенный центр ускорений (МЦУ).   |      |   |      |    |
| Определение ускорений с помощью МЦУ.        |      |   |      |    |
| СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ                      | 0,25 |   | 0,25 | 5  |
| Абсолютное, относительное и переносное      | 0,23 |   | 0,23 | 3  |
| движения точки. Относительные, переносные и |      |   |      |    |
| абсолютные скорости и ускорения точки.      |      |   |      |    |
| Теорема сложения скоростей. Теорема         |      |   |      |    |
| Кориолиса о сложении ускорений. Модуль и    |      |   |      |    |
| направление ускорения Кориолиса. Случай     |      |   |      |    |
| поступательного переносного движения.       |      |   |      |    |
| СЛОЖНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА              | 0,25 |   |      | 5  |
| Сложение поступательных движений твердого   |      |   |      |    |
| тела. Сложение двух вращательных движений   |      |   |      |    |
| вокруг параллельных и пересекающихся осей.  |      |   |      |    |
| Винтовое движение.                          |      |   |      |    |
| ВСЕГО                                       | 4    |   | 2    | 84 |

Курс 2 Семестр 3

|                 |                                               |        | ел по        | BI      | -                       | небной                                                     |
|-----------------|-----------------------------------------------|--------|--------------|---------|-------------------------|------------------------------------------------------------|
|                 |                                               |        | наг          | py:     | вки, час                | 2                                                          |
| <b>№</b><br>п/п | Наименование раздела<br>(краткое содержание)  | Лекции | Практические | занятия | Лабораторные<br>занятия | Самостоятельная работа на подготовку к аудиторным занятиям |
| 3. <i>J</i>     | <b>ДИНАМИКА</b>                               |        |              |         |                         |                                                            |
|                 | ВВЕДЕНИЕ В ДИНАМИКУ                           |        |              |         |                         | 6                                                          |
|                 | Предмет динамики. Основные понятия и          |        |              |         |                         |                                                            |
|                 | определения: масса, материальная точка, сила. |        |              |         |                         |                                                            |
|                 | Основные виды сил. Силы постоянные и силы,    |        |              |         |                         |                                                            |

| зависящие от времени, положения и скорости Законы механики. Инерциальная система отсчета. Задачи динамики.                                                                                                                                                                                                                                                |                                   |      |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|---|
| ДИНАМИКА ТОЧКИ                                                                                                                                                                                                                                                                                                                                            | 0,5                               | 0,5  | 7 |
| Дифференциальные уравнения движения свободной и несвободной материальной точко в декартовых и естественных координатах. Дво основные задачи динамики. Решение первой задачи. Решение второй задачи динамики Примеры интегрирования дифференциальных уравнений движения точки в случаях, когда сила зависит от времени, от положения точки от ее скорости. | я<br>е<br>й<br>а.<br>х            |      |   |
| ПРЯМОЛИНЕЙНЫЕ КОЛЕБАНИЯ ТОЧКИ                                                                                                                                                                                                                                                                                                                             | 0,5                               | 0,5  | 7 |
| Свободные колебания точки. Амплитуда, фаза частота и период колебаний. Затухающи колебания точки. Амплитуда, фаза, частота период колебания. Декремент колебаний Вынужденные колебания. Апериодическо движение. Вынужденные колебания с учетом сопротивления.                                                                                             | е<br>и<br>и.<br>е                 | 0,0  | , |
| ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ ТОЧКИ                                                                                                                                                                                                                                                                                                                              | 0,25                              | 0,25 | 6 |
| дифференциальной и конечной формах Кинетический момент точки относительно центра и оси. Теорема об изменения кинетического момента точки. Движение точки под действием центральной силы. Секторна скорость. Закон площадей.                                                                                                                               | і.<br>б<br>в<br>а.<br>о<br>и<br>и | 3,20 | 5 |
| Кинетическая энергия точки. Работа силы                                                                                                                                                                                                                                                                                                                   | l I                               |      | 6 |
| Мощность. Примеры вычисления работы силы тяжести, упругости, трения. Теорема об изменении кинетической энергии дифференциальной и конечной формах.                                                                                                                                                                                                        |                                   |      |   |
| ДИНАМИКА МЕХАНИЧЕСКОЙ СИСТЕМЫ<br>ГЕОМЕТРИЯ МАСС                                                                                                                                                                                                                                                                                                           | 0,25                              | 0,25 | 7 |
|                                                                                                                                                                                                                                                                                                                                                           | a<br>o<br>x                       |      |   |

| моментов инерции простейших однородных                                                                                                                                                                                                                                                                                                                                                          |      |      |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---|
| тел                                                                                                                                                                                                                                                                                                                                                                                             |      |      |   |
| Центробежные моменты инерции. Главные и главные центральные оси инерции и их свойства. Дифференциальные уравнения движения системы                                                                                                                                                                                                                                                              |      |      | 6 |
| ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС Закон сохранения движения центра масс.                                                                                                                                                                                                                                                                                                                           |      |      | 6 |
| Иллюстрация закона.                                                                                                                                                                                                                                                                                                                                                                             |      |      |   |
| КОЛИЧЕСТВО ДВИЖЕНИЯ СИСТЕМЫ Теорема об изменении количества движения системы и дифференциальной и конечной формах. Закон сохранения количества движения. Иллюстрация закона. Кинетический момент механической системы относительно центра и оси. Кинетический момент тела относительно оси вращения. Теорема об изменении кинетического момента системы. Закон сохранения кинетического момента | 0,25 | 0,25 | 7 |
| КИНЕТИЧЕСКАЯ ЭНЕРГИЯ СИСТЕМЫ Кинетическая энергия при поступательном, вращательном и плоском движениях тела. Работа силы, приложений к вращающемуся телу. Теорема об изменении кинетической энергии системы.                                                                                                                                                                                    | 0,25 | 0,25 | 7 |
| ПРИНЦИПЫ МЕХАНИКИ  Силы инерции материальной точки. Принцип Даламбера для точки и системы. Главный вектор и главный момент сил инерции точек тела и при различных видах его движения.                                                                                                                                                                                                           |      |      | 7 |
| Возможные перемещения системы. Число степеней свободы. Идеальные связи. Принцип возможных перемещений. Общее уравнение динамики.                                                                                                                                                                                                                                                                |      |      | 7 |
| Обобщенные координаты и обобщенные скорости. Обобщенные силы и их вычисление. Условия равновесия системы в обобщенных координатах. Дифференциальные уравнения движения системы в обобщенных координатах. Уравнение Лагранжа второго рода.                                                                                                                                                       |      |      | 7 |
| Определение динамических реакций подшипников при вращении твердого тела вокруг неподвижной оси; движение твердого тела вокруг неподвижной точки                                                                                                                                                                                                                                                 |      |      | 7 |

| Элементарная теория удара. Ударная сила, |   |   | 7  |
|------------------------------------------|---|---|----|
| ударный импульс. Общие теоремы теории    |   |   |    |
| удара. Удар упругий и неупругий. Потеря  |   |   |    |
| кинетической энергии при ударе (теорема  |   |   |    |
| Карно). Действие удара на физический     |   |   |    |
| маятник. Центр удара                     |   |   |    |
| ВСЕГО                                    | 2 | 2 | 93 |

# 4.2. Содержание практических (семинарских) занятий

| №   | Наименование раздела                | Тема практического               | К-во  | C                                                                       |
|-----|-------------------------------------|----------------------------------|-------|-------------------------------------------------------------------------|
| п/п | дисциплины                          | (семинарского) занятия           | часов | Самостоятельная работа на подготовку к аудиторным занятиям <sup>4</sup> |
|     |                                     | семестр №2                       |       |                                                                         |
| 1.  | СИСТЕМА                             | Сходящаяся система               | 1     | 1                                                                       |
|     | СХОДЯЩИХСЯ СИЛ                      | сил. Определение                 |       |                                                                         |
|     |                                     | равнодействующей                 |       |                                                                         |
|     |                                     | сходящейся системы               |       |                                                                         |
|     |                                     | сил. Равновесие системы          |       |                                                                         |
|     |                                     | сходящихся системы               |       |                                                                         |
|     |                                     | сил.                             | 4     |                                                                         |
| 2.  | СИСТЕМА                             | Равновесие системы               | 1     | 1                                                                       |
|     | СХОДЯЩИХСЯ СИЛ                      | сходящихся системы               |       |                                                                         |
|     |                                     | сил. Геометрическое              |       |                                                                         |
|     |                                     | условие равновесия.              |       |                                                                         |
|     |                                     | Построение силового              |       |                                                                         |
| 3.  | CHCTCMA                             | многоугольника.                  | 1     | 1                                                                       |
| 3.  | CUCTEMA                             | Определение реакций              | 1     | 1                                                                       |
|     | ПАРАЛЛЕЛЬНЫХ СИЛ.<br>ТЕОРИЯ ПАР СИЛ | опор твердого тела.              |       |                                                                         |
|     | ТЕОРИЯ ПАР СИЛ                      | Произвольная плоская система сил |       |                                                                         |
| 4   | CHCEDIA                             |                                  | 1     | 1                                                                       |
| 4.  | СИСТЕМА СИЛ,                        | Определение реакций              | 1     | 1                                                                       |
|     | ПРОИЗВОЛЬНО                         | опор твердого тела.              |       |                                                                         |
|     | РАСПОЛОЖЕННЫХ В                     | Система двух тел.                |       |                                                                         |
|     | ПЛОСКОСТИ                           |                                  |       |                                                                         |
| 5.  |                                     | Расчет плоских ферм.             | 1     | 1                                                                       |
|     |                                     | Метод вырезания узлов.           |       |                                                                         |
| 6.  |                                     | Расчет плоских ферм.             | 1     | 1                                                                       |
|     |                                     | Метод сечений                    |       |                                                                         |
|     |                                     | (Риттера).                       | 4     |                                                                         |
| 7.  | СИСТЕМА СИЛ,                        | Приведение                       | 1     | 1                                                                       |
|     | ПРОИЗВОЛЬНО                         | произвольной системы             |       |                                                                         |
|     | РАСПОЛОЖЕННЫХ В                     | сил к простейшему виду.          |       |                                                                         |
|     | ПРОСТРАНСТВЕ                        | Определение главного             |       |                                                                         |
|     |                                     | вектора и главного               |       |                                                                         |
|     |                                     | момента произвольной             |       |                                                                         |
| 8.  | CHCTEMA                             | системы сил.                     | 1     | 1                                                                       |
| 0.  | СИСТЕМА СИЛ,                        | Определение реакций              | 1     | 1                                                                       |
|     | ПРОИЗВОЛЬНО<br>РАСПОЛОЖЕННЫХ В      | опор твердого тела.              |       |                                                                         |
|     | гасположенных В                     | Произвольная                     |       |                                                                         |

<sup>&</sup>lt;sup>4</sup> Количество часов самостоятельной работы для подготовки к практическим занятиям

|     | ПРОСТРАНСТВЕ                                  | пространственная                                                         |     |     |
|-----|-----------------------------------------------|--------------------------------------------------------------------------|-----|-----|
|     | III OCTI MICTBE                               | система сил                                                              |     |     |
| 9.  | СИСТЕМА СИЛ,                                  | Определение координат                                                    | 0,5 | 0,5 |
| '   | ПРОИЗВОЛЬНО                                   | центра тяжести твердого                                                  | 0,5 | 0,5 |
|     | РАСПОЛОЖЕННЫХ В                               | тела.                                                                    |     |     |
|     | ПРОСТРАНСТВЕ                                  | i Cha.                                                                   |     |     |
|     |                                               |                                                                          |     |     |
| 10. | СИСТЕМА СИЛ,                                  | Равновесие с учетом                                                      | 0,5 | 0,5 |
|     | ПРОИЗВОЛЬНО                                   | трения.                                                                  |     |     |
|     | РАСПОЛОЖЕННЫХ В                               |                                                                          |     |     |
|     | ПРОСТРАНСТВЕ                                  |                                                                          |     |     |
| 11. | КИНЕМАТИКА ТОЧКИ                              | Кинематика точки.                                                        | 1   | 1   |
|     |                                               | Определение всех                                                         |     |     |
|     |                                               | характеристик движения                                                   |     |     |
|     |                                               | при координатном и                                                       |     |     |
|     |                                               | естественном способах                                                    |     |     |
|     |                                               | задания движения.                                                        |     |     |
| 12. | КИНЕМАТИКА                                    | Поступательное и                                                         | 1   | 1   |
|     | ТВЕРДОГО ТЕЛА.                                | вращательного                                                            |     |     |
|     |                                               | движения твердого тела.                                                  |     |     |
|     |                                               | Определение                                                              |     |     |
|     |                                               | характеристик движения                                                   |     |     |
|     |                                               | точек вращающегося                                                       |     |     |
|     |                                               | тела.                                                                    |     |     |
| 13. | ПЛОСКОПАРАЛЛЕЛЬНОЕ                            | Определение скоростей                                                    | 1   | 1   |
|     | ДВИЖЕНИЕ ТВЕРДОГО                             | точек плоского тела с                                                    |     |     |
|     | ТЕЛА                                          | помощью МЦС.                                                             |     |     |
| 14. | ПЛОСКОПАРАЛЛЕЛЬНОЕ                            | Определение скоростей                                                    | 1   | 1   |
|     | ДВИЖЕНИЕ ТВЕРДОГО                             | точек плоского тела с                                                    |     |     |
|     | ТЕЛА                                          | помощью теоремы о                                                        |     |     |
|     |                                               | проекции векторов                                                        |     |     |
|     |                                               | скоростей на ось. План                                                   |     |     |
|     |                                               | скоростей.                                                               |     |     |
| 15. | ПЛОСКОПАРАЛЛЕЛЬНОЕ                            | Определение ускорений                                                    | 1   | 1   |
|     | ДВИЖЕНИЕ ТВЕРДОГО                             | точек плоского тела с                                                    |     |     |
|     | ТЕЛА                                          | помощью теоремы об                                                       |     |     |
|     |                                               | ускорениях.                                                              |     |     |
| 16. | ПЛОСКОПАРАЛЛЕЛЬНОЕ                            | Определение ускорений                                                    | 1   | 1   |
|     | ДВИЖЕНИЕ ТВЕРДОГО                             | точек плоского тела.                                                     |     |     |
|     | ТЕЛА                                          | План ускорений. МЦУ.                                                     |     |     |
| 17. | СЛОЖНОЕ ДВИЖЕНИЕ                              | Определение                                                              | 1   | 1   |
|     | точки                                         | абсолютной скорости и                                                    |     |     |
|     |                                               | абсолютного ускорения                                                    |     |     |
|     |                                               | точки.                                                                   |     |     |
| 18. | СЛОЖНОЕ ДВИЖЕНИЕ                              | Сложение                                                                 | 1   | 1   |
|     | ТВЕРДОГО ТЕЛА                                 | поступательных                                                           |     |     |
|     | СЛОЖНОЕ ДВИЖЕНИЕ<br>ТОЧКИ<br>СЛОЖНОЕ ДВИЖЕНИЕ | Определение абсолютной скорости и абсолютного ускорения точки.  Сложение | -   | -   |

|    |                        | движений твердого тела.                |    |    |
|----|------------------------|----------------------------------------|----|----|
|    |                        | Сложение двух                          |    |    |
|    |                        | вращательных движений                  |    |    |
|    |                        | вокруг параллельных и                  |    |    |
|    |                        | пересекающихся осей.                   |    |    |
|    |                        | Винтовое движение.                     |    |    |
|    |                        | итого:                                 | 17 | 17 |
|    |                        | семестр №3                             |    |    |
| 1. | ДИНАМИКА               | Решение первой                         | 2  | 2  |
|    | МАТЕРИАЛЬНОЙ ТОЧКИ     | (прямой) и второй                      |    |    |
|    |                        | (обратной) задачи                      |    |    |
|    |                        | динамики точки.                        |    |    |
| 2. | ДИНАМИКА               | Прямолинейные                          | 2  | 2  |
|    | МАТЕРИАЛЬНОЙ ТОЧКИ     | колебания точки.                       |    |    |
|    |                        | Свободные колебания.                   |    |    |
| 3. | ДИНАМИКА               | Затухающие колебания.                  | 2  | 2  |
|    | МАТЕРИАЛЬНОЙ ТОЧКИ     |                                        |    |    |
| 4. | ДИНАМИКА               | Вынужденные                            | 2  | 2  |
|    | МАТЕРИАЛЬНОЙ ТОЧКИ     | колебания.                             |    |    |
|    |                        | Вынужденные                            |    |    |
|    |                        | колебания с учетом                     |    |    |
|    |                        | сопротивления.                         |    |    |
| 5. | ДИНАМИКА               | Общие теоремы                          | 2  | 22 |
|    | МАТЕРИАЛЬНОЙ ТОЧКИ     | динамики точки                         |    |    |
|    |                        | (теорема об изменении                  |    |    |
|    |                        | количества движения                    |    |    |
|    |                        | точки).                                |    |    |
| 6. | ДИНАМИКА               | Общие теоремы                          | 2  | 2  |
|    | МАТЕРИАЛЬНОЙ ТОЧКИ     | динамики точки (работа                 |    |    |
|    |                        | силы, теорема об                       |    |    |
|    |                        | изменении кинетической                 |    |    |
|    |                        | энергии точки).                        |    |    |
| 7. | ДИНАМИКА СИСТЕМЫ       | Применение общих                       | 2  | 2  |
|    | МАТЕРИАЛЬНЫХ ТОЧЕК     | теорем динамики                        |    |    |
|    | WITE IN WIEITER TO TER | системы к исследованию                 |    |    |
|    |                        | движения системы                       |    |    |
|    |                        | (теорема об изменении                  |    |    |
|    |                        | кинетической энергии                   |    |    |
|    |                        | системы).                              |    |    |
| 8. | ДИНАМИКА СИСТЕМЫ       | Осевые и центробежные                  | 2  | 2  |
|    | МАТЕРИАЛЬНЫХ ТОЧЕК     | моменты инерции.                       | _  | _  |
|    |                        | Главные и главные                      |    |    |
|    |                        |                                        |    |    |
|    |                        | центральные оси инерции и их свойства. |    |    |
|    |                        | Дифференциальные                       |    |    |
|    |                        |                                        |    |    |
|    |                        | уравнения движения                     |    |    |

|     | T                       |                         | 1 |   |
|-----|-------------------------|-------------------------|---|---|
|     |                         | системы                 |   |   |
| 9.  | ДИНАМИКА СИСТЕМЫ        | Теорема о движении      | 2 | 2 |
|     | МАТЕРИАЛЬНЫХ ТОЧЕК      | центра масс. Закон      |   |   |
|     |                         | сохранения движения     |   |   |
|     |                         | центра масс.            |   |   |
| 10. | ДИНАМИКА СИСТЕМЫ        | Применение общих        | 2 | 2 |
|     | МАТЕРИАЛЬНЫХ ТОЧЕК      | теорем динамики         |   |   |
|     |                         | системы к исследованию  |   |   |
|     |                         | движения системы        |   |   |
|     |                         | (теорема об изменении   |   |   |
|     |                         | кинетического момента). |   |   |
| 11. | ВАРИАЦИОННЫЕ            | Силы инерции            | 2 | 2 |
|     | ПРИНЦИПЫ МЕХАНИКИ       | материальной точки.     |   |   |
|     |                         | Принцип Даламбера для   |   |   |
|     |                         | точки и системы.        |   |   |
|     |                         | Главный вектор и        |   |   |
|     |                         | главный момент сил      |   |   |
|     |                         | инерции точек тела и    |   |   |
|     |                         | при различных видах его |   |   |
|     |                         | движения.               |   |   |
|     |                         |                         |   |   |
| 12. | ВАРИАЦИОННЫЕ            | Возможные               | 2 | 2 |
|     | ПРИНЦИПЫ МЕХАНИКИ       | перемещения системы.    |   |   |
|     |                         | Число степеней свободы. |   |   |
|     |                         | Идеальные связи.        |   |   |
|     |                         | Принцип возможных       |   |   |
|     |                         | перемещений.            |   |   |
|     |                         | 1                       |   |   |
| 13. | ВАРИАЦИОННЫЕ            | Общее уравнение         | 2 | 2 |
| 13. | ПРИНЦИПЫ МЕХАНИКИ       | динамики. Обобщенные    | 2 | 2 |
|     | III HIIIQHIDI WEXAIIIKH | координаты и            |   |   |
|     |                         | обобщенные скорости.    |   |   |
| 14. | ВАРИАЦИОННЫЕ            | Обобщенные силы и их    | 2 | 2 |
|     | ПРИНЦИПЫ МЕХАНИКИ       | вычисление. Условия     | _ | _ |
|     |                         | равновесия системы в    |   |   |
|     |                         | обобщенных              |   |   |
|     |                         | координатах.            |   |   |
|     |                         | Дифференциальные        |   |   |
|     |                         | уравнения движения      |   |   |
|     |                         | системы в обобщенных    |   |   |
|     |                         | координатах.            |   |   |
| 15. | ВАРИАЦИОННЫЕ            | Уравнение Лагранжа      | 2 | 2 |
|     | ПРИНЦИПЫ МЕХАНИКИ       | второго рода.           | _ | _ |
| 1.0 | ,                       | 2 2                     | 2 | 2 |
| 16. | АНАЛИТИЧЕСКАЯ           | Определение             | 2 | 2 |
| i   | МЕХАНИКА                | динамических реакций    |   |   |

|     |              | подшипников при вращении твердого тела вокруг неподвижной оси; движение твердого тела вокруг неподвижной точки |    |   |
|-----|--------------|----------------------------------------------------------------------------------------------------------------|----|---|
| 17. | ТЕОРИЯ УДАРА | Удар упругий и неупругий. Потеря кинетической энергии при ударе (теорема Карно).                               | 2  | 2 |
|     |              | 34                                                                                                             | 34 |   |
|     |              | 51                                                                                                             | 51 |   |

### 4.3. Содержание лабораторных занятий

Не предусмотрены учебным планом

## 4.4. Содержание курсового проекта/работы

Не предусмотрены учебным планом

# 4.5. Содержание расчетно-графического задания, индивидуальных домашних заданий

В процессе выполнения расчетно-графического задания, индивидуальных домашних заданий осуществляется контактная работа обучающегося с преподавателем. Консультации проводятся в аудитория и/или посредствам электронной информационно-образовательной среды университета.

#### РГЗ № 1 (18 часов)

РГЗ №1

- 1. С-1 Определение реакций опор твердого тела.
- 2. С-2 Определение усилий в стержнях плоской фермы.
- 3. С-3 Определение реакций опор составной конструкции.
- 4. С-7 Определение реакций опор объемного твердого тела.
- 5. К-1 Определение кинетических характеристик движения точки по заданным уравнениям ее движения.
- 6. К-2 Определение скоростей и ускорений точек вращающегося твердого тела.
- 7. К-4 Определение скоростей и ускорений точек при плоском движении.
- 8. К-7 Определение абсолютной скорости и абсолютного ускорения точки.

ИДЗ №1

1. Д-1 Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил. Применение основных теорем динамики и уравнения Лагранжа второго рода к исследованию движения материальной точки.

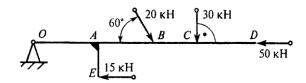
- 2. Д-9 Применение теоремы об изменении кинетического момента к определению угловой скорости твердого тела.
- 3. Д-10 Применение теоремы об изменении кинетической энергии к изучению движения механической системы.
  - 4. Д-14 Применение принципа возможных перемещений к решению задач о равновесии сил, приложенных к механической системе с одной степенью свободы.
  - 5. Д-16 Применение принципа Даламбера к определению реакций связей.
  - 6. Д-19 Применение общего уравнения динамики к исследованию движения механической системы с одной степенью свободы.

В результате решения РГЗ студент должен овладеть методами определения реакций связей и уметь применять их при решении поставленных задач, овладеть методами определения кинематических характеристик движения точки и твердого тела. Уметь определять скорость и ускорение точки и точек твердого тела. Овладеть методами решения задач динамики. Уметь определять закон движения точки, записывать дифференциальные уравнения движения и находить закон изменения скорости и закон движения точки и тела.

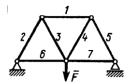
# 5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

## 5.1. Реализация компетенций

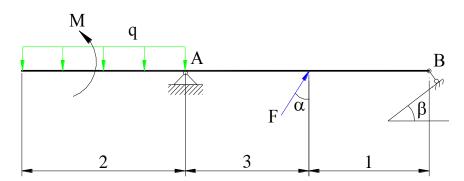
**1 Компетенция** <u>ОПК-4 Способен выполнять проектирование и расчет транспортных объектов в соответствии с требованиями нормативных документов</u>


(код и формулировка компетенции)

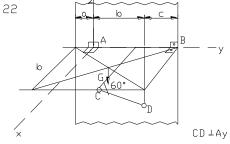
| Наименование индикатора достижения компетенции | Используемые средства оценивания                    |
|------------------------------------------------|-----------------------------------------------------|
| ОПК-4.3. Определяет силы реакций,              | защита РГЗ, зачет, тестовый контроль, собеседование |
| действующих на тело, скорости ускорения точек  |                                                     |
| тела в различных видах движений, анализирует   |                                                     |
| кинематические схемы механических систем       |                                                     |
| ОПК-4.4. Применяет законы механики для         | защита ИДЗ, тестовый контроль, экзамен              |
| выполнения проектирования и расчета            |                                                     |
| транспортных объектов                          |                                                     |


# 5.2. Типовые контрольные задания для промежуточной аттестации

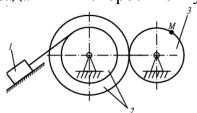
### 5.2.1. Перечень типовых заданий для зачета


1. Определить алгебраическую сумму моментов сил относительно точки O, учитывая что OA = AB = BC = CD = AE = 0,5 м.




2. Определить усилие в стержне I. Сила F = 120Н, длины всех стержней одинаковы.




3. Составить уравнения равновесия и уравнение проверки.



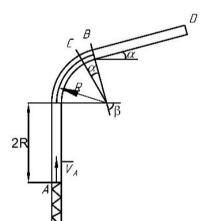
4. Составить уравнения равновесия плиты показанной на рисунке.



- 5. Даны уравнения движения точки  $x = \cos \pi t$ ,  $y = \sin \pi t$ . Определить модуль ускорения в момент времени  $t = t_1 = 1$ с. Построить траекторию, вектор скорости и вектор ускорения точки для заданного момента времени.
- 6. Груз 1 движется с заданными скоростью и ускорением  $v_1 = 5$  м/с;  $a_1 =$



0, 2 м/с². Найти скорость и ускорение точки M, если радиусы шкивов  $R_2=80$  см,  $r_2=40$  см,  $R_3=50$  см.


# Перечень типовых вопросов и заданий для экзамена

|       | Наименование       | Содержание вопросов (типовых заданий)        |  |  |  |
|-------|--------------------|----------------------------------------------|--|--|--|
| № п/п | раздела дисциплины | П                                            |  |  |  |
| 1.    | Динамика           | Предмет динамики. Основные понятия и         |  |  |  |
| 2.    |                    | определения. Законы динамики.                |  |  |  |
|       |                    | Две основные задачи динамики точки.          |  |  |  |
| 3.    |                    | Дифференциальные уравнения движения          |  |  |  |
| 4     |                    | свободной и несвободной материальной точки.  |  |  |  |
| 4.    |                    | Первая (прямая) задача динамики точки и ее   |  |  |  |
|       |                    | решение.                                     |  |  |  |
| 5.    |                    | Вторая (обратная) задача динамики точки и ее |  |  |  |
|       |                    | решение.                                     |  |  |  |
| 6.    |                    | Задача о движении точки в поле сил тяжести   |  |  |  |
|       |                    | без учета сил сопротивления среды.           |  |  |  |
| 7.    |                    | Влияние сопротивления среды на движение      |  |  |  |
|       |                    | точки в поле сил тяжести.                    |  |  |  |
| 8.    |                    | Свободные колебания точки. Амплитуда, фаза,  |  |  |  |
|       |                    | частота и период свободных колебаний.        |  |  |  |
| 9.    |                    | Свободные колебания материальной точки под   |  |  |  |
|       |                    | действием постоянной силы.                   |  |  |  |
| 10.   |                    | Свободные колебания точки с учетом сил       |  |  |  |
|       |                    | сопротивления. Затухающие колебания.         |  |  |  |
| 11.   |                    | Свободные колебания точки с учетом сил       |  |  |  |
|       |                    | сопротивления. Апериодическое движение.      |  |  |  |
| 12.   |                    | Вынужденные колебания точки. Явление         |  |  |  |
|       |                    | резонанса.                                   |  |  |  |
| 13.   |                    | Две меры механического движения.             |  |  |  |
|       |                    | Количество движения. Импульс силы. Теорема   |  |  |  |
|       |                    | об изменении количества движения точки в     |  |  |  |
|       |                    | дифференциальной и конечной формах.          |  |  |  |
| 14.   |                    | Кинетический момент точки относительно       |  |  |  |
|       |                    | центра и оси. Теорема об изменении           |  |  |  |
|       |                    | кинетического момента точки.                 |  |  |  |
| 15.   |                    | Кинетическая энергия. Работа и мощность      |  |  |  |
|       |                    | силы. Примеры вычисления работ сил:          |  |  |  |
|       |                    | тяжести, упругости, трения.                  |  |  |  |
| 16.   |                    | Теорема об изменении кинетической энергии    |  |  |  |
|       |                    | точки в дифференциальной и конечной          |  |  |  |
|       |                    | формах.                                      |  |  |  |
| 17.   |                    | Механическая система материальных точек.     |  |  |  |
|       |                    | Классификация сил, действующих на точки      |  |  |  |

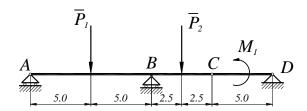
|     | системы. Свойства внутренних сил.          |
|-----|--------------------------------------------|
|     | Дифференциальные уравнения движения,       |
|     | механические системы.                      |
| 18. |                                            |
| 16. | Масса механической системы. Центр масс.    |
|     | Моменты инерции системы относительно       |
| 10  | центра и оси. Радиус инерции.              |
| 19. | Теорема Гюйгенса о моментах инерции        |
|     | относительно параллельных осей.            |
| 20. | Момент инерции системы относительно        |
|     | произвольной оси. Центробежные моменты     |
|     | инерции. Главные и главные центральные оси |
|     | инерции и их свойства.                     |
| 21. | Динамические характеристики движения       |
|     | механической системы: количество движения, |
|     | кинетический момент относительно центра    |
|     | или оси, кинетическая энергия.             |
| 22. | Кинетическая энергия твердого тела при его |
|     | поступательном, вращательном и плоском     |
|     | движениях.                                 |
| 23. |                                            |
| 23. | Теорема о движении центра масс системы.    |
| 24. | Закон сохранения движения центра масс.     |
| 24. | Теорема об изменении количества движения   |
|     | механической системы в дифференциальной и  |
|     | конечной формах. Следствия.                |
| 25. | Теорема об изменении кинетического момента |
|     | системы. Закон сохранения кинетического    |
|     | момента системы.                           |
| 26. | Теорема об изменении кинетической энергии  |
|     | механической системы. Работа и мощность    |
|     | силы, приложенной к вращающемуся телу.     |
| 27. | Принцип Даламбера для материальной точки и |
|     | механической системы. Сила инерции точки.  |
| 28. | Главный вектор и главный момент сил        |
|     | инерций точек системы относительно центра  |
|     | масс. Определение динамических реакций.    |
| 29. | Механическая система. Число степеней       |
|     | свободы системы. Возможные перемещения     |
|     | системы. Принцип возможных перемещений     |
|     | (общее уравнение статики).                 |
| 30. | Принцип Даламбера-Лагранжа. Общее          |
|     | уравнение динамики.                        |
| 31. |                                            |
| J1. | Обобщенные координаты и обобщенные         |
| 22  | скорости. Обобщенные силы.                 |
| 32. | Метод обобщенных координат. Уравнения      |
|     | равновесия системы в обобщенных            |
|     | координатах.                               |

| 33. | Метод                           | обобщенны     | х коорди  | инат. У | равнение |
|-----|---------------------------------|---------------|-----------|---------|----------|
|     | Лагранх                         | ка второго ро | ода.      |         |          |
| 34. | Элемен                          | гарная теорі  | ия удара. | Ударна  | я сила и |
|     | ударный импульс.                |               |           |         |          |
| 35. | Элемен                          | гарная теори  | ия удара. | Удар у  | пругий и |
|     | неупруг                         | ъй.           |           |         |          |
| 36. | Общие                           | теоремы       | теории    | удара.  | Потеря   |
|     | кинетической энергии при ударе. |               |           |         |          |

- 1. Тело массы m падает без начальной скорости на Землю, преодолевая сопротивление воздуха. Сила сопротивления пропорциональна скорости тела. Коэффициент пропорциональности равен  $\mu$  ( $\mu$  = const > 0). Полагая поле сил тяжести однородным, определить предельную (максимальную) скорость падения тела.
- 2. Шарик массой m, принимаемый за материальную точку, движется из положения A внутри трубки, ось которой расположена в вертикальной плоскости. Найти скорость шарика в положениях B. Трением на криволинейных участках траектории пренебречь. Шарик, пройдя путь  $h_0$ , отделяется от пружины.



f — коэффициент трения скольжения,  $\tau$  — время движения на участке BD, c — коэффициент жесткости пружины,  $h_0$  —начальная деформация пружины.

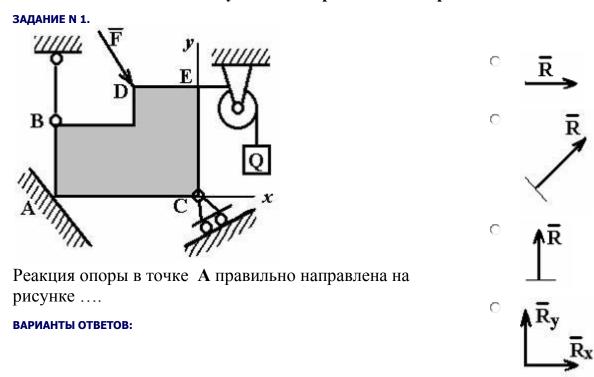

$$m$$
 = 1,1 кг,  $V_{\rm A}$  = 13 м/с,  $\tau_{\rm BD}$  = 1,1 с,  $R$  = 2,2 м,  $f$  = 0, 16,  $\alpha$  = 15 $^{\rm 0}$ ,  $\beta$  = 45 $^{\rm 0}$ ,  $h_0$  = 0,6 м,  $c$  = 200 H/м.

3. Механическая система с одной степенью свободы под действием сил тяжести из состояния покоя приходит в движение. Какое ускорение приобретет груз A, переместившись вверх или вниз на расстояние S=1 м. Качение цилиндра (или блока) происходит без проскальзывания с коэффициентом трения качения  $\delta$ . Коэффициент трения скольжения f. Радиусы инерции  $i_C$ ,  $i_D$  Внешние радиусы  $R_C$ ,  $R_D$ . Внутренние радиусы  $r_C$ ,  $r_D$ .



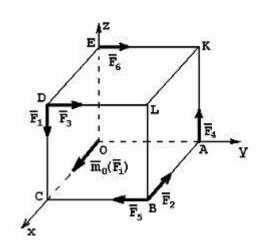
$$R_C = 36 \text{ cm}, r_C = 22 \text{ cm},$$
  
 $i_C = 26 \text{ cm}, i_D = 19 \text{ cm},$   
 $R_D = 21 \text{ cm}, r_D = 14 \text{ cm},$   
 $m_A = 6 \text{ kg}, m_C = 6 \text{ kg}, m_D = 3 \text{ kg},$   
 $f = 0,1, \delta = 2 \text{ mm}.$ 

4. Составная балка AD, лежащая на трех опорах, состоит из двух балок AC и CD, шарнирно соединенных в точке C. К балке AC приложены вертикальные силы  $P_1=10\,$  кН и  $P_2=6\,$  кН, а к балке CD — пара сил с моментом  $M_1=4\,$  кН·м, направленным против часовой стрелки. Схема балки и размеры указаны на рисунке.




Определить силы опорных реакции в A, B и D. Весом балок пренебречь.

# 5.2.2. Перечень контрольных материалов для защиты курсового проекта/ курсовой работы


Не предусмотрено учебным планом

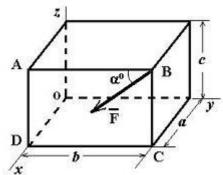
# **5.3.** Типовые контрольные задания (материалы) для текущего контроля в семестре



#### ЗАДАНИЕ N 2.

К вершинам куба приложены силы:  $\overline{F}_1$ ,  $\overline{F}_2$ ,  $\overline{F}_3$ ,  $\overline{F}_4$ ,  $\overline{F}_5$ ,  $\overline{F}_6$ .




 $\overline{m}_0(\overline{F}_i)\,$  - вектор момента относительно начала координат — это момент силы ...

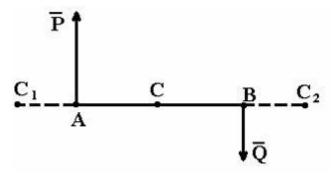
#### ВАРИАНТЫ ОТВЕТОВ:

- <u>F</u>4
- $\bigcirc$   $\overline{F}_{2}$
- $\overline{F}_6$
- $\bigcirc$   $\overline{F}_{s}$

#### ЗАДАНИЕ N 3.

Сила  $\overline{F}$  лежит в плоскости ABCD и приложена в точке B.




Момент силы  $\overline{F}$  относительно оси OY равен...

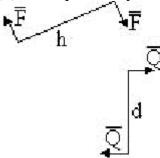
#### ВАРИАНТЫ ОТВЕТОВ:

- $\circ$  F a Sin  $\alpha$
- F b Cos α
- $\circ$  F c Sin  $\alpha$
- Fc Cos α

#### ЗАДАНИЕ N 4.

К плечу AB приложены две антипараллельные силы: P=6H, Q=2H, AB=8м. Точки C,  $C_1$ ,  $C_2$ , - точки возможного приложения равнодействующей.




Тогда модуль равнодействующей и расстояние, на котором она приложена, соответственно равны.

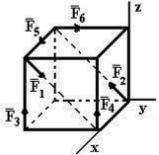
#### ВАРИАНТЫ ОТВЕТОВ:

- $\circ$  R=4H, AC<sub>2</sub>=12M.
- $\circ$  R=4H, AC<sub>1</sub>=4<sub>M</sub>.
- $\circ$  R=8H, AC<sub>2</sub>=12<sub>M</sub>.
- $\circ$  R=8H, AC<sub>1</sub>=4<sub>M</sub>.
- R=4H, AC=4м.

#### ЗАДАНИЕ N 5.

Даны пары сил, у которых F=3H, Q=2H, h=6м, d=5м.




После сложения, сила результирующей пары при плече l=10м будет равна

#### ВАРИАНТЫ ОТВЕТОВ:

- 0 3,7H
- 0 1,8H
- 0 1H
- 2,8H
- 0 5H

#### ЗАДАНИЕ N 6.

К вершинам куба, со стороной равной  $\emph{a}$ , приложены шесть сил  $F_1 = F_2 = F_3 = F_4 = F_5 = F_6 = F$ .

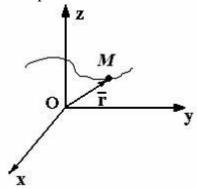


Сумма моментов всех сил системы относительно оси ОХ равна...

#### ВАРИАНТЫ ОТВЕТОВ:

- O -aF
- O 2aF
- O aF
- -2aF
- 0

#### ЗАДАНИЕ N 9.


Уравнение приведенное ниже используется при \_\_\_\_\_ способе задания движения точки:  $\bar{r} = \bar{r}(t)$ 

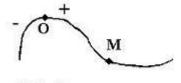
#### ВАРИАНТЫ ОТВЕТОВ:

- естественном
- о координатном (в декартовой системе координат)
- векторном
- о координатном (в полярной системе координат)
- с координатном (в цилиндрической системе координат)

#### ЗАДАНИЕ N 10.

Материальная точка **M** движется по закону  $\bar{r} = 4\bar{i} + \sin t \bar{j} + 3t \bar{k}$ .




Тогда ускорение точки будет направлено ...

#### ВАРИАНТЫ ОТВЕТОВ:

- параллельно плоскости YZ
- параллельно оси Y
- перпендикулярно оси Z
- параллельно плоскости **XZ**
- перпендикулярно оси X

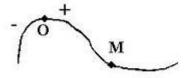
#### ЗАДАНИЕ N 11.

Движение точки по известной траектории задано уравнением  $^{\circ}=5-1,5t^2$  (м).



 $OM = \sigma$ 

Скорость точки в момент времени t=1c равна...(m/c)


#### ВАРИАНТЫ ОТВЕТОВ:

- 0 5
- **—**3
- 0 3,5

#### ЗАДАНИЕ N 12.

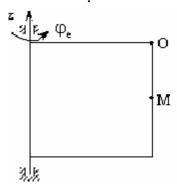
Движение точки по известной траектории задано уравнением  $2t+3t^2$  (м).

ਾ =1-



$$OM = \sigma$$

В момент времени t=1с нормальное ускорение равно  $\mathbf{a_n} = \mathbf{2} \, (\text{м/c}^2)$ , радиус кривизны траектории  $\rho = \dots (\text{м})$ .


#### ВАРИАНТЫ ОТВЕТОВ:

- 0 12,5
- 0 8
- 0 2
- 0,5

#### ЗАДАНИЕ N 14.

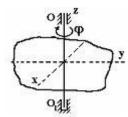
Прямоугольная пластинка вращается вокруг вертикальной оси по закону

$$arphi_e = rac{\pi}{3} t$$
 рад . По одной из сторон пластинки двигается точка по закону  $\mathit{OM} = 2t$  м



Ускорение Кориолиса для точки М, равно...

#### ВАРИАНТЫ ОТВЕТОВ:


$$\begin{array}{cc} & \frac{2\pi}{3} t \, \text{m/c}^2 \end{array}$$

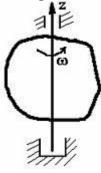
$$\frac{2\pi}{3} \, \mathrm{m/c^2}$$

$$\bigcirc \frac{2\pi \cdot \sqrt{3}}{3} \text{ m/c}^2$$

#### ЗАДАНИЕ N 15.

Твердое тело вращается вокруг неподвижной оси  $OO_1$  по закону  $\varphi = \left(4 + \sqrt{3}\right)^2 - 7t$ 




В момент времени t = 1 c тело будет вращаться ...

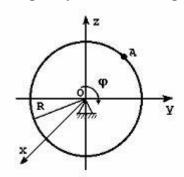
#### ВАРИАНТЫ ОТВЕТОВ:

- равномерно
- равнозамедленно
- равноускоренно
- замедленно
- ускоренно

#### ЗАДАНИЕ N 16.

Тело равномерно вращается вокруг оси **Z** с угловой скоростью  $^{\odot}$  =6 c<sup>-1</sup>.




За время **t**=2 с тело повернется на угол ....

#### ВАРИАНТЫ ОТВЕТОВ:

- $0.120^{0}$
- $\circ$  360<sup>0</sup>
- 3 рад
- 12 рад

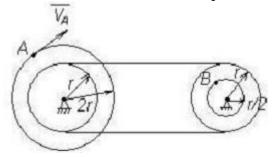
#### ЗАДАНИЕ N 17.

Тело радиуса R=10 см вращается вокруг оси Ох по закону  $\phi = 2+t^3$  рад.



В момент времени t=2c точка A имеет нормальное

ускорение, равное...


#### ВАРИАНТЫ ОТВЕТОВ:

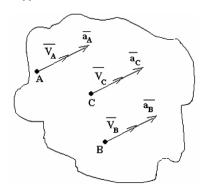
- $\circ$  1440 cm/c<sup>2</sup>
- $\circ$  1600 cm/c<sup>2</sup>
- $\circ$  1000 cm/c<sup>2</sup>

 $\circ$  360 cm/c<sup>2</sup>

#### ЗАДАНИЕ N 18.

Точка A одного из шкивов ременной передачи имеет скорость  $V_A$ =20 см/с.




Тогда скорость точки В другого шкива

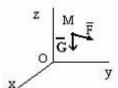
равна ...

#### ВАРИАНТЫ ОТВЕТОВ:

- $\circ$  V<sub>B</sub>=40 c<sub>M</sub>/c
- $\circ$  V<sub>B</sub>=20 c<sub>M</sub>/c
- $\circ$  V<sub>B</sub>=10 c<sub>M</sub>/c
- $\circ$  V<sub>B</sub>=5 c<sub>M</sub>/c

#### ЗАДАНИЕ N 20.




Тело двигается так, что точки его имеют направления скорости и ускорений, как показано на рисунке. В этом случае справедливо утверждение, что тело...

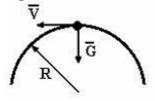
#### ВАРИАНТЫ ОТВЕТОВ:

- о ускоренно вращается вокруг неподвижной оси
- О двигается поступательно по окружности
- О двигается поступательно, криволинейно, ускоренно
- О двигается поступательно, прямолинейно, ускоренно

#### ЗАДАНИЕ N 23.

На свободную материальную точку М массы m=1кг действует, кроме силы тяжести G, сила  $\overline{F}=9,8\overline{k}$  (H).




Если в начальный момент точка находилась в покое, то в этом случае она будет...

#### ВАРИАНТЫ ОТВЕТОВ:

- находиться в покое
- двигаться равномерно вдоль оси ОХ
- О двигаться ускоренно вниз
- О двигаться равноускоренно вверх
- О двигаться равномерно вверх

#### ЗАДАНИЕ N 25.

Груз весом G=3 кН двигается по кольцу радиуса R=50 см, находящемуся в вертикальной плоскости.



Если давление на кольцо в верхней точке траектории будет равным 0 (g=10  $\text{m/c}^2$ ), то скорость груза в этой точке будет равна  $V = \dots (\text{m/c})$ 

#### ВАРИАНТЫ ОТВЕТОВ:

- 0 4,1
- $\circ$  1,2
- 0 12,2
- 0 22,4
- $\circ$  2,2

#### ЗАДАНИЕ N 27.

Материальная точка двигается под действием известной силы. Из перечисленных характеристик движущейся точки

А. масса

В. скорость

С. ускорение

*D. сила* 

для определения кинетической энергии точки необходимы...

#### ВАРИАНТЫ ОТВЕТОВ:

- О АиС
- АиD
- О A, Си D
- О АиВ

#### ЗАДАНИЕ N 28.

Система состоит из двух материальных точек, каждая из которых обладает массой  ${\bf m}$  и скоростью  $\overline{{
m V}}$  .



Тогда модуль количества движения данной системы будет равен...

#### ВАРИАНТЫ ОТВЕТОВ:

- $\circ$  mV $\sqrt{2}$
- $\circ$  0
- $\cap$  mV
- 2mV
- $\circ$   $2mV\sqrt{2}$

## 5.4. Описание критериев оценивания компетенций и шкалы оценивания

При промежуточной аттестации в форме экзамена, дифференцированного зачета, дифференцированного зачета при защите курсового проекта/работы используется следующая шкала оценивания: 2 — неудовлетворительно, 3 — удовлетворительно, 4 — хорошо, 5 — отлично.

При промежуточной аттестации в форме зачета используется следующая шкала оценивания: зачтено, не зачтено.

### Критериями оценивания достижений показателей являются:

| Наименование        | Критерий оценивания                                                |
|---------------------|--------------------------------------------------------------------|
| показателя          |                                                                    |
| оценивания          |                                                                    |
| результата обучения |                                                                    |
| по дисциплине       |                                                                    |
| Знания              | Знание терминов, определений, понятий                              |
|                     | Знание основных законов, теорем, принципов и методов решения задач |
|                     | механики                                                           |
|                     | Четкость изложения и интерпретации знаний                          |
| Умения              | Уметь применять на практике полеченные знания                      |
| Навыки              | Владение принципами решения задач механики                         |
|                     | Владение методами моделирования задач механики                     |

Оценка преподавателем выставляется интегрально с учётом всех показателей и критериев оценивания.

Оценка сформированности компетенций по показателю знания.

| Критерий                                    | Уровень освоения и оценка             |                                                                   |                             |                                                                               |
|---------------------------------------------|---------------------------------------|-------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------|
|                                             | 2                                     | 3                                                                 | 4                           | 5                                                                             |
| Знание терминов,<br>определений,<br>понятий | Не знает<br>терминов и<br>определений | Знает термины и определения, но допускает неточности формулировок | Знает термины и определения | Знает термины и определения, может корректно сформулировать их самостоятельно |
| Знание основных                             | Не знает                              | Знает, но                                                         | Знает основные              | Знает основные                                                                |
| законов, теорем,                            | основных                              | допускает                                                         | теоремы статики;            | понятия и                                                                     |
| принципов и                                 | законов, теорем,                      | неточности при                                                    | условия                     | аксиомы                                                                       |
| методов                                     | принципов и                           | изложении                                                         | равновесия                  | теоретической                                                                 |
| решения задач                               | методов решения                       | основных теорем                                                   | сходящейся,                 | механики;                                                                     |
| механики                                    | задач механики                        | статики; условий                                                  | плоской и                   | основные                                                                      |
|                                             |                                       | равновесия                                                        | пространственной            | теоремы статики;                                                              |
|                                             |                                       | сходящейся,                                                       | систем сил;                 | условия                                                                       |
|                                             |                                       | плоской и                                                         | основные                    | равновесия                                                                    |
|                                             |                                       | пространственной                                                  | теоремы                     | сходящейся,                                                                   |
|                                             |                                       | систем сил;                                                       | кинематики;                 | плоской и                                                                     |
|                                             |                                       | знает основные                                                    | виды движения;              | пространственной                                                              |
|                                             |                                       | виды движения;                                                    | основные                    | систем сил;                                                                   |
|                                             |                                       | основные законы                                                   | теоремы и законы            | основные                                                                      |
|                                             |                                       | динамики точки.                                                   | динамики точки              | теоремы                                                                       |

|               |                  |                 |                 | 1                |
|---------------|------------------|-----------------|-----------------|------------------|
|               |                  | Рассказывает об | и системы       | кинематики;      |
|               |                  | основных        | материальных    | виды движения;   |
|               |                  | методах решения | точек,          | основные         |
|               |                  | задач по        | может изложить  | теоремы и законы |
|               |                  | изученным       | методы решения  | динамики точки   |
|               |                  | разделам.       | задач по        | и системы        |
|               |                  |                 | изученным       | материальных     |
|               |                  |                 | разделам.       | точек,           |
|               |                  |                 |                 | Самостоятельно   |
|               |                  |                 |                 | может изложить   |
|               |                  |                 |                 | методы решения   |
|               |                  |                 |                 | задач по         |
|               |                  |                 |                 | изученным        |
|               |                  |                 |                 | разделам.        |
| Четкость      | Не может         | Обучающийся     | Может излагать  | Исчерпывающе,    |
| изложения и   | излагать и       | допускает       | классификацию   | последовательно, |
| интерпретации | интерпретировать | неточности при  | основных форм и | четко и          |
| знаний        | полученные       | изложении:      | объектов        | логически        |
|               | знанаия          | классификации   | расчетов;       | стройно излагает |
|               |                  | основных форм и | основные        | классификацию    |
|               |                  | объектов        | понятия и       | основных форм и  |
|               |                  | расчетов        | аксиомы         | объектов         |
|               |                  | _               | теоретической   | расчетов;        |
|               |                  |                 | механики;       |                  |
|               |                  |                 |                 |                  |

# Оценка сформированности компетенций по показателю умения.

| Критерий                                                  |                                                              | Уровень ос                                                                                                                                                                                                                       | своения и оценка                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 1                                                       | 2                                                            | 3                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                              |
| Уметь<br>применять<br>на практике<br>полеченные<br>знания | Не умеет<br>применять на<br>практике<br>полученные<br>знания | Выполняет на практике задачи расчета на равновесие конструкций, но допускает ошибки. может составлять кинематические уравнения и может составлять дифференциальные уравнения движения точки и системы точек допуская неточности. | выполняет на практике расчет на равновесие; может составлять кинематические уравнения и определять основные кинематические характеристики движения; может составлять дифференциальные уравнения движения точки и системы точек | Самостоятельно может применять на практике методы расчета конструкций на равновесие; определять основные кинематические характеристики движения; составлять дифференциальные уравнения материальной точки и системы материальных точек; получать конечные уравнения движения движения движения |

|  |  | системы         |
|--|--|-----------------|
|  |  | материальных    |
|  |  | точек (твердого |
|  |  | тела).          |

# Оценка сформированности компетенций по показателю навыки.

| Критерий                                                   | Уровень освоения и оценка                                  |                                                                                                                             |                                                                                                                                                                              |                                                                                                                                                                                                                           |
|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | 2                                                          | 3                                                                                                                           | 4                                                                                                                                                                            | 5                                                                                                                                                                                                                         |
| Владение<br>принципами<br>решения задач<br>механики        | Не владеет<br>принципами<br>решения задач<br>механики      | С дополнительной помощью может выполнить переход от реального объекта к расчетной схеме в зависимости от конкретных условий | Может произвести переход от реального объекта к расчетной схеме в зависимости от конкретных условий.                                                                         | Владеет способами перехода от реального объекта к расчетной схеме в зависимости от конкретных условий, принципами решения задач механики                                                                                  |
| Владение<br>методами<br>моделирования<br>задач<br>механики | Не владеет методами моделирования и расчета задач механики | С дополнительной помощью может осуществлять расчет простых конструкций на равновесие; Расчет характеристик движения точки;  | Может применять основные методы расчета простых конструкций на равновесие; методами расчета характеристик движения точки; методами исследования движения материальной точки. | Методами моделирования задач механики. Методами расчета простых и составных конструкций на равновесие; Методами расчета характеристик движения точки и твердого тела; Методами исследования движения механических систем. |

# 6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

### 6.1. Материально-техническое обеспечение

| No | Наименование специальных помещений и | Оснащенность специальных помещений и   |
|----|--------------------------------------|----------------------------------------|
|    | помещений для самостоятельной работы | помещений для самостоятельной работы   |
| 1. | Специализированная аудитория         | Учебная мебель, компьютеры с выходом в |
|    |                                      | интернет, презентационная техника      |

### 6.2. Лицензионное и свободно распространяемое программное обеспечение

| $N_{\underline{0}}$ | Перечень лицензионного программного | Реквизиты подтверждающего документа |
|---------------------|-------------------------------------|-------------------------------------|
|                     | обеспечения.                        |                                     |
|                     | Не используется в учебном процессе  |                                     |

## 6.3. Перечень учебных изданий и учебно-методических материалов

- 5. *Тарг, С. М.* Краткий курс теоретической механики: учеб. для втузов /С.М. Тарг. изд. 20-е, стер. М.: Высш. шк., 2010. 416 с.
- 6. Курс теоретической механики [Электронный ресурс] : учебник / Н. Н. Никитин. Москва : Лань, 2011. 720 с. Режим доступа: <a href="http://e.lanbook.com/books/element.php?pl1\_cid=25&pl1\_id=1807">http://e.lanbook.com/books/element.php?pl1\_cid=25&pl1\_id=1807</a>
- 7. *Мещерский, И.В.* Задачи по теоретической механике: учеб. пособ. / И.В. Мещерский. изд. 48-е, стер. СПб.: изд-во "Лань", 2008. 448 с.
- 8. *Мещерский, И.В.* Задачи по теоретической механике: учеб. пособ. / И.В. Мещерский. –Электрон.текстовые данные. СПб.: изд-во "Лань", 2012. Режим доступа: http://e.lanbook.com/books/element.php?pl1\_id=2786
- 9. *Яблонский, А.А.* Сборник заданий для курсовых работ по теоретической механике: учеб. пособие для техн. вузов / А.А. Яблонский, С.С. Норейко, С.А. Вольфсон и др.; под ред. А.А. Яблонского. 13-е изд., стер. М.: Интеграл-Пресс, 2004. 384 с.
- 10. *Воробьев*, *Н.Д.* Сборник расчетно-графических заданий по теоретической механике с примерами выполнения: учеб. пособие для студентов всех направлений бакалавриата/ Н.Д. Воробьев. 2-е изд., перераб. и доп. Белгород: Изд-во БГТУ, 2009. 274 с
- 11. *Воробьев*, *Н.Д.* Сборник расчетно-графических заданий по теоретической механике с примерами выполнения: учеб. пособие для студентов всех направлений бакалавриата/ Н.Д. Воробьев. Электрон.текстовые данные. Белгород: Изд-во БГТУ, 2010. Режим доступа: <a href="https://elib.bstu.ru/Reader/Book/2013040918111192511800002037">https://elib.bstu.ru/Reader/Book/2013040918111192511800002037</a>
- 12. *Бать, М.И.* Теоретическая механика в примерах и задачах. Том 1. Статика и кинематика: учеб. пособие/ М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. Электрон.текстовые данные. СПб.: "Лань", 2013. Режим доступа: <a href="http://e.lanbook.com/books/element.php?pl1\_id=4551">http://e.lanbook.com/books/element.php?pl1\_id=4551</a>
- 13. *Бать*, *М.И.* Теоретическая механика в примерах и задачах. Том 2. Динамика: учеб. пособие/ М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. Электрон.текстовые данные. СПб.: "Лань", 2013. Режим доступа:
- 14. <a href="http://e.lanbook.com/books/element.php?pl1\_id=4552">http://e.lanbook.com/books/element.php?pl1\_id=4552</a>
- 15. Дегтярь А.Н. Применение теоремы об изменении кинетического момента к исследованию вращательного движения системы: методические указания к выполнению расчетно-графического задания /А. Н. Дегтярь, И. В. Колмыкова. Белгород: Изд-во БГТУ, 2011. 24 с.
- 16. Дегтярь A.H. Динамика материальной точки: методические указания к выполнению расчетно-графического задания /A. Н. Дегтярь, И. В. Колмыкова. Белгород: Изд-во БГТУ, 2008. 20 с.

- 17. *Воробьев, Н.Д.* Теоретическая механика: учебное пособие / Н. Д. Воробьев, М. Ю. Ельцов, Л. Н. Спиридонова, С. К. Самойлова, А. Н. Дегтярь.— Белгород: Изд-во БГТУ, 2004. 195 с
- 18. М.Я. Выгодский. Справочник по высшей математике. Государственное издательство физико-математической литературы. Москва, 1998 и др.

# 6.4. Перечень интернет ресурсов, профессиональных баз данных, информационно-справочных систем

- 1. http://eqworld.ipmnet.ru/
- 2. http://www.teoretmeh.ru/
- 3. http://www.teoretmeh.ru/test.htm
- 4. <a href="http://exir.ru/termeh/ploskaya\_sistema\_shodyaschisa\_sil.htm">http://exir.ru/termeh/ploskaya\_sistema\_shodyaschisa\_sil.htm</a>
- 5. http://www.teoretmeh.ru/lect.html
- 6. http://window.edu.ru/resource/959/71959/files/samgtu\_meh05.pdf
- 7. http://window.edu.ru/resource/956/71956/files/samgtu\_meh02.pdf
- 8. http://teormeh.bstu.ru/shared/attachments/48666
- 9. http://standartgost.ru/

# 7. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ<sup>10</sup>

Рабочая программа утверждена на 20 <u>ДО</u> /20 <u>21</u> учебный год без изменений

Протокол № 8 заседания кафедры от «30» июня 2020 г.

Заведующий кафедрой\_

Директор института

Mermules A. III

Montrice, AND

John / Hapob B. A./

Montrice, AND

<sup>&</sup>lt;sup>10</sup> Законияется каждый учебный год на отдельных листих