МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г. Шухова)

РАБОЧАЯ ПРОГРАММА

дисциплины

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ТЕПЛОЭНЕРГЕТИКЕ

направление подготовки (специальность):

13.03.01 Теплоэнергетика и теплотехника

Квалификация

Plane a particular de la propercio de la combi

бакалавр

Форма обучения

заочная

Институт: Энергетический

Кафедра: Энергетики теплотехнологии

Рабочая программа составлена на основании требований:

- Федерального государственного образовательного стандарта высшего образования по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника (уровень бакалавриата), утвержденного приказом Министерства образования и науки Российской Федерации от 01 октября 2015 г., № 1081.
- плана учебного процесса БГТУ им. В.Г. Шухова, введенного в действие в 2015 году.

(Составитель: канд. техн. наук, доцент(И.А. Щетинина)
тепло	Рабочая программа обсуждена на заседании кафедры энергетик гехнологии
Заведу	2015 г., протокол № 3 3 (В.П. Кожевников)
инсти	
	у 19 » <u>110 дб рд :</u> 201 <u>5</u> г., протокол № <u>3</u> Председатель: канд. техн. наук, доцент (А.Н. Семернин)

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

	Формируе	мые компетенции	Требования к результатам обучения
No	Код компетенции	Компетенция	
		Общепрофессиональны	ie
1	ОПК-2		В результате освоения дисциплины
		базовые знания в области	обучающийся должен
		естественнонаучных дисциплин,	Знать: алгоритмы создания баз
		готовностью выявлять	данных в теплоэнергетике
		естественнонаучную сущность	Уметь: формировать представления
		проблем, возникающих в ходе	об объекте моделирования, об
		профессиональной	адекватности математической
		деятельности, применять для их	модели, о численном эксперименте,
		разрешения	его преимуществах и недостатках
		основные законы	Владеть: математическими
		естествознания,	моделями теплоэнергетическими
		методы математического	объектами
·		анализа и моделирования,	
		теоретического и	
		экспериментального	
		исследования	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

$N_{\overline{o}}$	Наименование дисциплины (модуля)		
1	Высшая математика		
2	Информационные технологии		
3	Техническая термодинамика		
4	Гидрогазодинамика		
5	Тепломассообмен		
6	Автоматизированные системы мониторинга и управления распределёнными объектами теплотехнологии		

Содержание дисциплины служит основой для изучения следующих дисциплин:

$N_{\overline{0}}$	№ Наименование дисциплины (модуля)		
1	Энергосбережение в теплоэнергетике и теплотехнологии		
2	Источники и системы энергоснабжения предприятий		

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 3 зач. единиц, 108 часов.

Вид учебной работы	Всего часов	Семестр №7
Общая трудоемкость дисциплины, час	108	108
Контактная работа (аудиторные занятия), в	18	18
т.ч.:		
лекции	10	10
лабораторные	8	8
практические		
Самостоятельная работа студентов, в том	90	90
числе:		
Курсовой проект		
Курсовая работа		
Расчетно-графическое задания		
Индивидуальное домашнее задание	9	9
Другие виды самостоятельной работы	81	81
Форма промежуточная аттестация (зачет, экзамен)	Диф. зачет	Диф. зачет

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 4.1. Наименование тем, их содержание и объем

Курс 5 Семестр № 9

No	Наименование раздела (модуля)	К-во	Объем на тематический раздел, ч		раздел, час
Ú/Π		лекционных	Практические	Лаборат	Самосто-
		часов	занятия	ор-ные	ятельная
				занятия	работа
1	2	3	4	5	6
	1. Детерминирован	іные математ	ические модели	I	
	Физическое и математическое	2		2	20
	моделирование, их различие и сходство.	2			20
	Численный эксперимент. Этапы				
	построения детерминированных моделей:		12		
	система уравнений математического				
	описания процесса, численное решение				
	задачи, проверка адекватности модели.				
	Роль начальных и граничных условий в				
	построении адекватной модели.				
	2. Численн	ый эксперим	ент		
9	Основные методы получения	2		2	
	Алгебраических аналогов	. 2			

	дифференциальных уравнений переноса -				
	метод конечных разностей.				
	Использование рядов Тейлора для				20
	дискретизации дифференциальных				
	уравнений. Оценка точности				Ti.
-	аппроксимации.				
	3. Математическое модели	рование кон	вективного тепл	ообмена	
	Интегрирование по контрольному объему	2		2	20
	для дискретизации и диффузионных	2			20
	членов дифференциальных				
	уравнений. Понятие об устойчивости				
2	разностной схемы. Правила корректного				
	построения дискретных аналогов				
	дифференциальных уравнений переноса.				
	Условная и безусловная устойчивость				
	разностных схем.				
	4.Математическое	моделирован	ие горения		
	Методы численного решения системы	4		2	21
	дискретных уравнений: прямой метод	4			21
	исключения Гаусса и итерационный				
	Гаусса-Зейделя. Метод прогонки и область				
	его применения. Условия сходимости				
	итераций.				
	ВСЕГО	10		8	81

4.2 Содержание лабораторных занятий

Материал лекций закрепляется лабораторными работами.

№ п/п	Наимено вание раздела дисципл	Тема практического (семинарского) занятия	К-во часов	К-во часов СРС
	ИНЫ			
		семестр №7		
1		Стабилизированное течение жидкости в канале	2	20
2		Стационарная теплопроводность футеровки печи	2	20
3		Нестационарная теплопроводность футеровки	4	25
		ИТОГО:	8	65

4.3. Содержание практических занятий

- учебным планом не предусмотрено

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов (типовых заданий)

No	Наименование раздела	Содержание вопросов (типовых заданий)
п/п	дисциплины	
1	Детерминированные	Физический смысл дифференциального уравнения переноса тепловой энергии.
1	математические модели	Физический смысл дифференциального уравнения диффузионного горения.
		Какие члены дифференциальных уравнений называют
		диффузионными?
		Какие члены дифференциальных уравнений называют
8		конвективными?
		Какие члены дифференциальных уравнений называют
		нестационарными?
		Какие члены дифференциальных уравнений называют
2	Численный эксперимент	источниковыми?
		В чем различие граничных условий 1-го и 2-го рода?
		С какой целью дифференциальные уравнения заменяются
		дискретными?
		В чем преимущество метода конечных объемов по сравнению с
		разностным?
		Что понимается под сходимостью разностной схемы?
		Основные правила построения дискретных аналогов
		дифференциальных уравнений.
		Почему неявная разностная схема характеризуется безусловной
		сходимостью?
×		Физический смысл схемы с разностями "против потока"?
3	Математическое	В чем преимущество схемы с разностями "против потока"?
	моделирование	Зачем выполняют линеаризацию Источниковых членов дискретных
	конвективного	уравнений?
	теплообмена	Почему необходимы итерации при численном решении дискретных
		уравнений?
		Что понимается под сходимостью итераций?
		Какую структуру имеет система уравнений при ее решении методом
4	Математическое	прогонки?
	моделирование горения	Что понимается под адекватностью математической модели?
		Как проверяется адекватность математической модели?

5.2 Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем.

- учебным планом не предусмотрены

5.3 Перечень индивидуальных домашних заданий, расчетно-графических заданий.

Учебным планом предусмотрено выполнение индивидуального домашнего задания Тема индивидуального домашнего задания:

- Математическое моделирование теплообмена в топке котла. Цель индивидуального домашнего задания: изучение студентами методологии математического моделирования заданного теплотехнологического процесса. Индивидуальное домашнее задание включает расчётно-пояснительную записку и графическую часть.

Расчётно-пояснительная записка оформляется на листах формата А4 (с одной стороны листа).

- Расчётно-пояснительная записка должна содержать:
 - сведения о студенте, выполняющем работу: фамилия, инициалы, группа;
 - -задание на расчётно-графическую работу, подписанное студентом и преподавателем;
 - основную часть, включающую в себя математическую модель заданного теплотехнологического процесса, математическую обработку результатов моделирования и исследований работы заданного теплотехнологического процесса.
 - выводы и заключение.
 - В записке даются указания, обоснования и пояснения численного моделирования теплотехнологического процесса.

Графическая часть представляет собой математическую модель с графиками математического моделирования.

ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

Основная литература электронный ресурс

- 1. Кузнецов В.А. Численное исследование диффузионного горения природного газа. Результаты, методы, алгоритмы [Электронный ресурс] : монография / В. А. Кузнецов. Электрон, текстовые дан. Германия : Palmarium Academic Publishing, 2014. https://elib.bstu.ru/Reader/Book/2014090313184479000000657666
- 2. Алексеев, Г.В. Численные методы при моделировании технологических машин и оборудования: учеб, пособие. [Электронный ресурс] / Г.В. Алексеев, Б.А. Вороненко, М.В. Гончаров, И.И. Холявин. Электрон, дан. СПб. : ГИОРД, 2014. https://edanbook.eom/book/69875#authors
- 3. Суслова С.А. Численные методы [Электронный ресурс]: методические указания к выполнению лабораторных работ/ Суслова С.А.— Электрон, текстовые данные.— Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2012.— 34 с.— http://www.iprbookshop.ru/55178.html
- **4.** Компьютерные методы математических исследований [Электронный ресурс]: методические указания к самостоятельной работе по дисциплинам «Численные методы» и «Компьютерное моделирование»/ Электрон, текстовые данные.— Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2013.— 30 с.— http://www.iprbookshop.ru/55102.html

Основная литература печатный ресурс

1. Кузнецов, В. А. Математическое моделирование горения и тепловых процессов : учеб, пособие для студентов специальности 140105 / В. А. Кузнецов. - Белгород : Изд-во БГТУ им. В. Г. Шухова, 2005. - 79 с

- 1. Кузнецов, В. А. Численное исследование диффузионного горения природного газа. Результаты, методы, алгоритмы [Электронный ресурс] : монография / В. А. Кузнецов. Электрон, текстовые дан. Германия : Palmarium Academic Publishing, 2014 https://elib.bstu.ru/Reader/Book/2014090313184479000000657666
- 2. Новиков С.И. Оптимизация систем автоматизации теплоэнергетических процессов. Часть 1. Автоматические системы регулирования теплоэнергетических процессов с аналоговыми регуляторами [Электронный ресурс]: учебное пособие/ Новиков С.И.— Электрон, текстовые данные.— Новосибирск: Новосибирский государственный технический университет, 2011.— 284 с.— Режим доступа: http://www.iprbookshop.ru/45414.— ЭБС «IPRbooks» http://www.iprbookshop.ru/45414.html

Дополнительная литература печатный ресурс

1. Кузнецов, В. А. Основы математического моделирования теплотехнологических процессов : учеб, пособие для студентов специальности 100800 / В. А. Кузнецов. - Белгород : Изд-во БГТУ им. В. Г. Шухова, 2004.- 66 экз.

Справочная и нормативная литература

- 1. Блох А.Г., Журавлев Ю.А., Рыжков Л.Н. Теплообмен излучением: Справочник. М.: Энергоатомиздат, 1991. 588 с.
- 3. Лисиенко В.Г., Щелоков Я.М., Ладыгичев М.Г. Топливо. Рациональное сжигание, управление и технологическое использование: Справочник. Т. 1. М.: Теплотехник, 2003. 608 с.
- 4. Лисиенко В.Г., Щелоков Я.М., Ладыгичев М.Г. Хрестоматия энергосбережения: Справочник. Т. 1. М.: Теплоэнергетик, 2003. 688 с.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Пекционные занятия - аудитория, оснащённая письменными столами, стульями, классной доской (для рисования мелом или маркером)

Лабораторные занятия проводятся в компьютерном классе, оборудованном компьютерами с использованием:

- компьютерных программы математического моделирования теплотехнологических процессов.

Просматриваются видеофильмы:

- основы гидро и аэродинамики (кинофильм, 2 части, 16 мм);
- струйные течения (кинофильм, 2 части, 16 мм);
- явления переноса в газах (кинофильм, 2 части, 16 мм);
- лучистый теплообмен (кинофильм, 2 части, 16 мм);
- горение и теплообмен в топке котла (компьютерная программа);
- радиационно-конвективный теплообмен в экспериментальной трубе (компьютерная программа).

Утверждение рабочей прог	граммы без изменений		
Рабочая программа без измен	нений утверждена на 20	16/20/fy	ебный год.
Протокол №9 заседа	ния кафедр ы от « <u>Д</u> 6 »_	05	20 16 r.
-	W.		
Заведующий кафедрой	J Nur	(В.П. І	Кожевников)
Подпись ФИО			
	//		
Директор института	Elizacion -	(A.B.	Бе лоусов)
Подпись ФИО			

Утверждение рабочей программы без изменений	
Рабочая программа без изменений утверждена на 20 ₹20	ѝбучебный год.
Протокол №9 заседания кафедры∕от «_₺5» 🕠 🕏	2017r.
Want !	
Заведующий кафедрой (В	3.П. Кожевников)
Подпись ФИО	
The second	
Директор института	А.В. Белоусов)

Утверждение рабочей прог	граммы без изменени:	й
Рабочая программа без измен	нений утверждена на	20(8/20(9) учебный год.
Протокол № заседан	ния кафедры/от « 👭 🔻	>_052018 г.
	W. J	
Заведующий кафедрой	1007	(В.П. Кожевников)
Подпись ФИО		
Директор института	13/13/2	(А.В.Белусо в)
	-	

приложения

Приложение №1. Методические указания для обучающегося по освоению дисциплины «Математическое моделирование в теплоэнергетике».

Курс " Математическое моделирование в теплоэнергетике " представляет собой неотъемлемую составную часть подготовки студентов по направлению "Теплоэнергетика и теплотехника" и предназначен для подготовки бакалавров по направлению "Теплоэнергетика и теплотехника".

Целью освоения дисциплины являются приобретение студентами знаний и выработка профессиональных компетенций в области современных численных методов математического моделирования горения и тепломассообменных процессов. Занятия проводятся в виде лекций и лабораторных работ.

Распределение материала дисциплины по темам и требования к ее освоению содержатся в рабочей программе дисциплины, которая определяет содержание и особенности изучения курса.

Курс состоит из четырех разделов. В первом разделе изучаются основные понятия математического моделирования на основе дифференциальных уравнений в частных производных. Эти знания формируют у студентов теоретическую основу и простейшие практические навыки математического и компьютерного моделирования.

Во втором разделе главное место занимают дискретные аналоги дифференциальных уравнений и основные численные методы их решения. В третьем разделе основное внимание уделяется современным численным методам моделирования стационарной и нестационарной теплопроводности. Более сложные вопросы численного моделирования конвективного теплообмена и горения топлива в диффузионном факеле рассматриваются в последнем четвертом разделе. Здесь же формулируются принципы численного математического моделирования взаимосвязанных теплотехнологических процессов в промышленных печах и топках.

Лабораторные работы позволяют закрепить теоретические знания. Освоение теоретического материала проверяется при выполнении и защите лабораторных работ. Формы контроля знаний студентов предполагают текущий и итоговый контроль. Текущий контроль знаний проводится с помощью проверки их практического усвоения в ходе лабораторных работ по важнейшим теоретическим темам и при защите ИДЗ. Итоговый контроль знаний осуществляется на экзамене.

Большое значение для изучения курса имеет самостоятельная работа студентов. Самостоятельная работа является главным условием успешного освоения изучаемой учебной дисциплины и формирования высокого профессионализма будущих магистров. Глубокое освоение дисциплины возможно лишь при систематической самостоятельной работе студента, требующей осмысления и повторения пройденного материала.

Исходный этап изучения курса — ознакомление с рабочей программой, характеризующей границы и содержание учебного материала, который подлежит освоению. Изучение отдельных тем курса необходимо осуществлять в соответствии с поставленными целями, основываясь вопросах, поставленных в лекции преподавателя. В учебниках и учебных пособиях, представленных в списке основной и дополнительной литературы, содержатся возможные ответы на поставленные вопросы.

Студент изучает и усваивает соответствующие разделы лекций и учебных пособий в ходе подготовки к выполнению и при оформлении лабораторных работ, а также при подготовке к защите ИДЗ и к экзамену. Значительное внимание уделяется оформлению результатов ИДЗ, так как именно здесь студент получает и усваивает навыки работы с технически документами.

Рабочая программа	без изменений утверждена на 2019 /20 учебный год.
Протокол № 12 заседа	ания кафедры от «_13» июня 2019 г.
Зам. заведующего каф	редрой Ю.В. Васильченко
Директор института	А.В. Белоусов