МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г. Шухова)

СОГЛАСОВАНО

Директор института магистратуры

И.В. Ярмоленко

(20» 05 <u>2021</u>г.

УТВЕРЖДАЮ

Директор института энергетики, информационных технологий и управляющих систем

А.В. Белоусов

2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

Комбинированные энерготехнологические установки

Направление подготовки (специальность):

13.04.01 – ТЕПЛОЭНЕРГЕТИКА И ТЕПЛОТЕХНИКА

Направленность программы (профиль, специализация): Энергетика теплотехнологии

Квалификация

магистр

Форма обучения

очная

Институт: Энергетики, информационных технологий и управляющих систем

Кафедра: Энергетики теплотехнологии

Рабочая программа составлена на основании требований:

- Федерального государственного образовательного стандарта высшего образования – магистратура по направлению подготовки 13.04.01
 Теплоэнергетика и теплотехника, утв. приказом Министерства образования и науки Российской Федерации от 28 февраля 2018 г.
 № 146;
- учебного плана, утвержденного Ученым советом БГТУ им. В.Г. Шухова в 2021 году.

Составитель: канд. техн. наук, доц. _______ (Т.И. Тихомирова)

Рабочая программа обсуждена на заседании кафедры энергетики теплотехнологии «22» _ 04 _ 2021 г., протокол № _ \mathcal{E} .

Заведующий кафедрой Энергетики теплотехнологии канд. техн. наук, доцент

Витем (Ю.В. Васильченко)

Рабочая программа одобрена методической комиссией института энергетики, информационных технологий и управляющих систем « $\underline{10}$ » $\underline{05}$ 2021 г., протокол № $\underline{9}$.

Председатель

канд. техн. наук, доцент

(А.Н. Семернин)

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Категория (груп- па) компетенций	Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Наименование показателя оценивания результата обу- чения по дисциплине			
	Общепрофессиональные компетенции					
Проектно-конструкторские задачи профессиональной деятельности	ПК-2. Способен разрабатывать проектные решения для тепловых сетей, котельных, центральных тепловых пунктов, малых теплоэлектроцентралей, теплоэнергетических, теплотехнических и теплотехнологических объектов	ПК-2.3. Разрабатывает проектные решения для комбинированных энерготехнологических установок.	Показатели оценивания результата обучения по дисциплине: Знать: основные комбинированные энерготехнологические установки; Уметь: проводить оценку комбинированного энерготехнологического использования материальных и тепловых потоков; разрабатывать проектные решения для комбинированного энерготехнологического использования материальных и тепловых потоков; Владеть: существующими техническими методами комбинированного энерготехнологического использования материальных и тепловых потоков; методами научного поиска методов и методик комбинированного энерготехнологического использования материальных и тепловых потоков;			

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Компетенция ПК-2. Способен к разработке проектных решений для тепловых сетей, котельных, центральных тепловых пунктов, малых теплоэлектроцентралей, теплоэнергетических, теплотехнических и теплотехнологических объектов.

Данная компетенция формируется следующими дисциплинами.

Стадия	Наименования дисциплины
1	Тепловые расчеты теплотехнологических установок
2	Энергоэффективные теплотехнологические процессы и установки
3	Комбинированные энерготехнологические установки
4	Производственная преддипломная практика
5	Подготовка к процедуре защиты и защита выпускной квалификационной работы

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 7 зач. единиц, 252 часов. Дисциплина реализуется в рамках практической подготовки: 7 зач. единиц Форма промежуточной аттестации: экзамен

Вид учебной работы	Всего	Семестр
	часов	№ 3
Общая трудоемкость дисциплины, час	252	252
Контактная работа (аудиторные занятия), в т.ч.:	90	90
лекции	34	34
лабораторные	34	34
практические	17	17
групповые консультации в период теоретического	5	5
обучения и промежуточной аттестации		
Самостоятельная работа студентов, включая ин-	162	162
дивидуальные и групповые консультации, в том		
числе:		
Курсовой проект	54	54
Курсовая работа	_	_
Расчетно-графическое задание	_	_
Индивидуальное домашнее задание	_	_
Самостоятельная работа на подготовку к аудитор-	72	72
ным занятиям (лекции, практические занятия, лабо-		
раторные занятия)		
Экзамен	36	36

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Наименование тем, их содержание и объем

Курс 2 Семестр № 3.

		Об	ъем на т	ематичес	кий
			разде	ел, час	1
№ п/п	Наименорание разлела (молуля)		Практические за- нятия	Лабораторные занятия	Самостоятельная работа
1	2	3	4	5	6
	1. Основы энерготехнологического ко	омбинир	ования	[
				12	
2. E	вторичные энергоресурсы при организации комби	инирова	ния эне	рготехн	ологи-
	ческих установок				
	Классификация вторичных энергоресурсов. Горючие ВЭР, получаемые в результате технологических процессов. Коксовый и доменный газы в черной металлургии. коксовый и доменный газы в черной металлургии. Тепловые ВЭР. ВЭР избыточного давления. Основные принципы использования газообразных горючих отбросных газов в сажевом производстве. Технологическая схема производства активных сортов углерода. Горелка для сжигания газов, содержащих жидкие фракции. Огневое обезвреживание шламов	4			2
	металлургических производств.				
	3. Утилизация высокотемпературных те	пловых	сотходо	В	

Газотрубные котлы-утилизаторы.	6	3	8	14
Применение газотрубных котлов-утилизаторов. Тех-				
нические характеристики. Преимущества и недостат-				
ки. Котлы-утилизаторы Г-250, Г-250П, Г-345, Г-345П,				
Г-550П.				
Водотрубные котлы-утилизаторы.				
Котлы-утилизаторы КУ-40, КУ-60, КУ-100, КУ-100Б1,				
КУ-125, КУ-150. Их технические характеристики и				
конструкционные особенности.				
Пакетно-конвективные котлы (ПКК), их применение,				
технические характеристики и конструкционные осо-				
бенности.				
Котлы-утилизаторы за обжиговыми печами серного				
колчедана. Схема энерготехнологического агрегата				
(ЭТА) для низкотемпературного обжига колчедана в				
кипящем слое. Котлы КС-200 ВТКУ и КС-450 ВТКУ.				
Тепловой баланс схемы обжига колчедана.				
ЭТА печь – паровой котел ПКС-10/40, предназначен-				
ный для сжигания сероводорода и охлаждения про-				
дуктов сгорания.				
Серный энерготехнологический агрегат САТА-Ц-100-				
в технологическом процессе получения серной кисло-				
ты из элементарной серы или сероводорода.				
Установки сухого тушения кокса (УСТК).				
Тепловой баланс камеры тушения кокса.				
Газотрубные котлы-утилизаторы.				
Применение газотрубных котлов-утилизаторов. Тех-				
нические характеристики. Преимущества и недостат-				
ки. Котлы-утилизаторы Γ -250, Γ -250 Π , Γ -345, Γ -345 Π ,				
Г-550П.				
Водотрубные котлы-утилизаторы.				
Котлы-утилизаторы КУ-40, КУ-60, КУ-100, КУ-100Б1,				
КУ-125, КУ-150. Их технические характеристики и				
конструкционные особенности.				
Пакетно-конвективные котлы (ПКК), их применение,				
технические характеристики и конструкционные осо-				
бенности.				
Котлы-утилизаторы за обжиговыми печами серного				
колчедана. Схема энерготехнологического агрегата				
(ЭТА) для низкотемпературного обжига колчедана в				
кипящем слое. Котлы КС-200 ВТКУ и КС-450 ВТКУ.				
Тепловой баланс схемы обжига колчедана.				
ЭТА печь – паровой котел ПКС-10/40, предназначен-				
ный для сжигания сероводорода и охлаждения про-				
дуктов сгорания.				
Серный энерготехнологический агрегат САТА-Ц-100-				
в технологическом процессе получения серной кисло-				
ты из элементарной серы или сероводорода.				
Установки сухого тушения кокса (УСТК).				
Тепловой баланс камеры тушения кокса.				
Котлы-утилизаторы сталеплавильных конвертеров.				
110 11111 J III III SATOPDI OTANIONI II BIBINI KOMBOPTOPOB.				

	Энерготехнологическое комбинирование в прокате	4	4	8	14
	производстве. Схема ЭТА для нагрева металла и вы-				
	работки энергетического пара				
	Энерготехнологическое комбинирование в целлюлоз-				
	но-бумажной промышленности.				
	Энерготехнологический содорегенерационный агре-				
	rat.				
	Энерготехнологическое комбинирование в доменном				
	производстве. Схема комбинированной установки				
	сжатия и нагрева доменного дутья. Расчет тепловой				
	схемы.				
	Энерготехнологическая схема получения водорода.				
	Расчет тепловой схемы.				
	Охлаждение конструктивных элементов высокотем-				
	пературных установок. Схемы водяного охлаждения				
	конструктивных элементов. Испарительное охлажде-				
	ние. Схема испарительного охлаждения. Преимуще-				
	ства СИО.				
	CIBA CITO.				
	~ II ~				
	5. Использование отработавше				
	Основные направления использования отработавшего	4	2		6
	пара.				
	Использования отработанного пара в теплоснабжении.				
	Принципиальная схема использования отработавшего				
	пара для теплоснабжения.				
	Использования отработанного пара для выработки				
	электроэнергии.				
	Схемы использования отработавшего пара для выра-				
	ботки электроэнергии.				
	Уравнение теплового баланса аккумулятора.				
	Аккумуляторы Рутса. Схема аккумулятора Рутса.				
	Суточный график работы оборудования.				
	6. Утилизация низкопотенциальных	теплов	ых отхо	ДОВ	Γ
	Основные технические средства для утилизации теп-	4	2	6	10
	лоты низкопотенциальных ВЭР.				
	Утилизация теплоты загрязненных стоков.				
	Аппарат мгновенного вскипания.				
	Тепловой баланс аппарата мгновенного вскипания.				
	Последовательное включение аппаратов мгновенного				
	вскипания.				
	Утилизация теплоты агрессивных жидкостей.				
	<u> -</u>				
	Схема теплообменника с промежуточным теплоноси-				
	телем.				
	Схема теплообменника с промежуточным теплоноси-				
	телем.				
	Тепловой баланс установки для охлаждения агрессив-				
	ных жидкостей.				
	Утилизация теплоты вентиляционных выбросов.				
	Вентиляционные агрегаты Hoval LHW (Дания). Ос-				
	новные преимущества.				
	Схема распределения воздушных потоков.				
	Вентиляционный агрегат фирмы Wiessmann.				
L	Doning Michael Michael Michaell.	1	1	L	1

Регенеративный вращающийся теплообменник РТ-12.				
Тепловые насосы.				
7. Глубокое охлаждение продукто			1	
Влажный воздух, влажные продукты сгорания.	4	2		6
I-d – диаграмма влажного воздуха. Определение ос-				
новных характеристик влажного воздуха.				
Утилизация теплоты низкотемпературных дымовых				
газов.				
Контактные теплообменники с активной насадкой –				
КТАНы.				
Принципиальная схема контактного теплообменника с				
активной насадкой.				
Особенности процессов контактного тепломассообме-				
Ha.				
Режимы работки насадки. Расчет контактного экономайзера.				
•				
8. Парогазовые установк	КИ			
		_		
Основные типы парогазовых установок.	4	2	4	8
Парогазовые установки с котлами полного горения				
(ПГУПГ). Принципиальная тепловая схема ПГУПГ.				
Идеальный цикл ПГУПГ.				
Парогазовые установки с высоконапорными парогене-				
раторами (ПГУВ). Принципиальная тепловая схема				
ПГУВ. Идеальный цикл ПГУВ.				
Парогазовые установки с котлами-утилизаторами.				
Принципиальная тепловая схема ПГУКУ. Идеальный цикл ПГУКУ.				
Количественные показатели термодинамических цик-				
лов ПГУ.				
Термическая эффективность парогазовых установок.				
Соотношения между параметрами газового и парового				
циклов. Цикл ПГУ полного горения. Определение				
термического КПД.				
Парогазовые установки с впрыском пара.				
Тепловая схема ПГУ ВП открытого типа.				
Термодинамический цикл ПГУ с впрыском пара.				
Изменение КПД газовой турбины при увеличении до-				
ли впрыскиваемого пара.				
Тепловая схемы ПГУ со впрыском пара и промежу-				
точным пароперегревателем.				
Модернизация котельных в ТЭЦ.				
Принципиальная тепловая схема мини-ТЭЦ.	2.4	17	2.4	70
ВСЕГО:	34	17	34	72

4.2. Содержание практических (семинарских) занятий

№ п/п	Наименование раздела дисциплины	Тема практического (семинарского) занятия	К-во часов	К-во часов
				CPC
		семестр №3		
1	Основы энерготехноло-	Тепловые балансы энерготеплотехни-	2	2
	гического комбиниро-	ческих установок		
	вания			
2	Утилизация высокотем-	Методика расчета котлов-	3	3
	пературных тепловых	утилизаторов после ВТУ		
	отходов			
3	Энерготехнологические	Расчет тепловой схемы энерготехно-	4	4
	установки	логического комбинирования		
4	Использование отрабо-	Разработка схемы использования от-	2	2
	тавшего пара	работавшего пара для теплоснабжения		
5	Утилизация низкопотен-	Расчет теплообменника с промежу-	2	2
	циальных тепловых от-	точным теплоносителем.		
	ходов			
6	Глубокое охлаждение	Контактные теплообменники с актив-	2	2
	продуктов сгорания	ной насадкой – КТАНы.		
7	Парогазовые установки	Принципиальная тепловая схема	2	2
		ПГУПГ		
		ИТОГО:	17	17
		-	ВСЕГО	34

4.3. Содержание лабораторных занятий

No	Наименование	Тема лабораторного занятия	К-во	К-во
Π/Π	раздела дисциплины		часов	часов
				CPC
		семестр №3		
1	Основы энерготехноло-	Составление тепловых балансов энер-	8	8
	гического комбиниро-	готехнологических установок		
	вания			
2	Утилизация высокотем-	Подбор и расчет котла-утилизатора	8	8
	пературных тепловых	КУ-60 в теплотехнологическую схему		
	отходов	металлургического производства		
3	Энерготехнологические	Разработка схемы ЭТА для нагрева	8	8
	установки	металла и выработки энергетического		
		пара. Тепловой баланс энерготехноло-		
		гической установки.		
1	V	T	-	6
4	Утилизация низкопотен-	Тепловой расчет контактного теплообменника с активной насадкой –	6	0
	циальных тепловых от-	ооменника с активнои насадкои – КТАНа		
5	ХОДОВ		4	4
3	Парогазовые установки	Анализ парогазовой установки с	4	4
		впрыском пара.		
	<u> </u>	ИТОГО:	34	34
			ВСЕГО	68
		<u> </u>	DCLI U	00

4.4. Содержание курсового проекта

Учебным планом предусмотрено выполнение курсового проекта. Тематика курсового проекта:

- 1. Тепловой расчет котла-утилизатора после стекловаренной печи
- 2. Тепловой расчет котла-утилизатора после нагревательной печи.
- 3. Тепловой расчет котла-утилизатора после металлургической печи.

Курсовой проект имеет своей целью приобретение студентами умения проводить оценку комбинированного энерготехнологического использования материальных и тепловых потоков теплотехнологического процесса, разрабатывать проектные решения для комбинированного энерготехнологического использования материальных и тепловых потоков, применяя для этого существующие технические методы комбинированного энерготехнологического использования материальных и тепловых потоков.

Содержание курсового проекта — материальные и тепловые расчеты, конструктивные разработки энерготехнологического реактора с представлением расчетных результатов, объем работы до 40 с.

Типовое задание

Выполнить теплотехнический расчет тепло утилизатора после мартеновской печи на заданные условия. Определить паропроизводительность котла-утилизатора и температуру отходящих газов после котла-утилизатора. Определить КПД энерготехнологической установки.

Исходные данные для расчета:

Расход технологических газов V_{ε} , M^3/q	160000;
Начальная температура газов T_{ε} , $^{\circ}C$	850;
Конечная температура газов T_{ε}^{κ} , C	213;
Избыточное давление газов $P_{u_{36}}$, $M\Pi a$	0,005;
Давление пара на выход из котла $P_{paar{o}}$, $M\Pi a$	1,5;
Температура перегретого пара t_{nn} , C	250;
Температура питательной воды t_{ns} , $^{\circ}C$	104;

В котел-утилизатор поступают мартеновские газы следующего состава (% об): $CO_2 = 5.5; O_2 = 11.3; H_2O = 4.1; N_2 = 79$

В процессе выполнения курсового проекта осуществляется контактная работа обучающегося с преподавателем. Консультации проводятся в аудитории университета.

4.5. Содержание расчетно-графического задания, индивидуальных домашних заданий

Не предусмотрено учебным планом

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1. Реализация компетенций

Компетенция ПК-2. Способен к разработке проектных решений для тепловых сетей, котельных, центральных тепловых пунктов, малых теплоэлектроцентралей, теплоэнергетических, теплотехнических и теплотехнологических объектов.

Наименование индикатора достижения компетенции	Используемые средства оценивания
ПК-2.3. Разрабатывает проектные реше-	Экзамен, защита курсового проекта, защита лабора-
ния для комбинированных энерготехно-	торных работ, решение задач на практических заня-
логических установок.	тиях.

5.2. Типовые контрольные задания для промежуточной аттестации

5.2.1. Перечень контрольных вопросов (типовых заданий) для экзамена

No	На	аименование	Содержание вопросов (типовых заданий)
Π/Π	разде	ла дисциплины	
1	Основы		-Применение теплоэнергетических балансов для анализа возможностей энерготехнологического комбинирования Снижения тепловых потерь и обеспечение технико- экономической оптимизации теплотехнологических установок с помощью энерготехнологического комбинирования Энергоэффективные комбинированные энерготехнологические установки для сушки и обжига сырьевых материалов и получения дополнительных источников энергииЭнергетическая эффективность современных комбинированных энерготехнологических установок в различных отраслях производства, системах получения энергии и в энергоснабжении Роль математического моделирования в энерготехнологическом комбинировании различных энерготехнологическом комбинировании различных энерготехнологиче-
			ских процессов.

3	при организации комбинирования энерготехнологических установок Утилизация высокотемпе-	-Классификация вторичных энергоресурсовГорючие ВЭР, получаемые в результате технологических процессов. Коксовый и доменный газы в черной металлургии. коксовый и доменный газы в черной металлургииТепловые ВЭРВЭР избыточного давленияОсновные принципы использования газообразных горючих отбросных газов в сажевом производствеТехнологическая схема производства активных сортов углерода. Газотрубные котлы-утилизаторы. Применение газотрубных котлов-утилизаторов. Техниче-
	дов	ские характеристики. Преимущества и недостатки. Котлы- утилизаторы Г-250, Г-250П, Г-345, Г-345П, Г-550П. Водотрубные котлы-утилизаторы. КУ-60, КУ-100, КУ-100Б1, КУ- 125, КУ-150. Их технические характеристики и конструк- ционные особенности. Пакетно-конвективные котлы (ПКК), их применение, тех- нические характеристики и конструкционные особенности -Котлы-утилизаторы за обжиговыми печами серного кол- чеданаСерный энерготехнологический агрегат САТА-Ц-100- в технологическом процессе получения серной кислоты из элементарной серы или сероводорода Установки сухого тушения кокса (УСТК). -Газотрубные котлы-утилизаторыВодотрубные котлы-утилизаторыПакетно-конвективные котлы (ПКК), их применение, тех- нические характеристики и конструкционные особенности -Котлы-утилизаторы за обжиговыми печами серного кол- чедана. -Серный энерготехнологический агрегат САТА-Ц-100- в технологическом процессе получения серной кислоты из элементарной серы или сероводорода.
4	Энерготехологические установки	-Котлы-утилизаторы сталеплавильных конвертеров -Энерготехнологическое комбинирование в прокатном производстве. Схема ЭТА для нагрева металла и выработки энергетического пара -Энерготехнологическое комбинирование в целлюлознобумажной промышленностиЭнерготехнологический содорегенерационный агрегат. Схема комбинированной установки сжатия и нагрева доменного дутья. Расчет тепловой схемыЭнерготехнологическая схема получения водорода. Расчет тепловой схемыОхлаждение конструктивных элементов высокотемпературных установок. Схемы водяного охлаждения конструктивных элементов Испарительное охлаждение. Схема испарительного охлаждения. Преимущества СИО.
5	Использование отрабо- тавшего пара	-Основные направления использования отработанного пара.

		-Использования отработанного пара в теплоснабжении.
		Принципиальная схема использования отработавшего пара
		для теплоснабжения.
		-Использования отработанного пара для выработки элек-
		троэнергии.
		Схемы использования отработавшего пара для выработки
		электроэнергии.
		-Уравнение теплового баланса аккумулятора.
		Аккумуляторы Рутса. Схема аккумулятора Рутса.
		i ikkymysmiopisi i y iou. Ekoma akkymysmiopa i y iou.
6	Утилизация низкопотен-	-Основные технические средства для утилизации теплоты
	· ·	низкопотенциальных ВЭР.
	дов	-Утилизация теплоты загрязненных стоков.
		Аппарат мгновенного вскипания.
		-Тепловой баланс аппарата мгновенного вскипания.
		-Утилизация теплоты агрессивных жидкостей.
		-Схема теплообменника с промежуточным теплоносите-
		лем.
		-Тепловой баланс установки для охлаждения агрессивных
		жидкостей.
		-Утилизация теплоты вентиляционных выбросов.
		-Тепловые насосы.
7	Глубокое охлаждение	-Влажный воздух, влажные продукты сгорания.
'	продуктов сгорания	I-d – диаграмма влажного воздуха. Определение основных
	продуктов сторания	характеристик влажного воздуха. Определение основных
		-Утилизация теплоты низкотемпературных дымовых газов.
		Контактные теплообменники с активной насадкой – КТА-
		Ны.
		-Принципиальная схема контактного теплообменника с ак-
		тивной насадкой.
		Особенности процессов контактного тепломассообмена.
		Режимы работки насадки.
		-Расчет контактного экономайзера.
8	Парогазовые установки	-Основные типы парогазовых установок.
	Trup or use BBre y Crusic BRit	-Парогазовые установки с котлами полного горения
		(ПГУПГ). Принципиальная тепловая схема ПГУПГ.
		Идеальный цикл ПГУПГ.
		-Парогазовые установки с высоконапорными парогенера-
		торами (ПГУВ). Принципиальная тепловая схема ПГУВ.
		Идеальный цикл ПГУВ.
		-Парогазовые установки с котлами-утилизаторами.
		-Количественные показатели термодинамических циклов
		ПГУ. Термическая эффективность парогазовых установок.
		-Парогазовые установки с впрыском пара.
		-Тепловая схема ПГУ ВП открытого типа.
		-Термодинамический цикл ПГУ с впрыском пара.
		Изменение КПД газовой турбины при увеличении доли
		впрыскиваемого пара.
		-Тепловая схемы ПГУ со впрыском пара и промежуточным
		пароперегревателем.
		-Модернизация котельных в ТЭЦ.
		Принципиальная тепловая схема мини-ТЭЦ.
L	1	тринципиштим тепловил елеми мини 1014.

Перечень типовых задач для экзамена

Задача

Определить удельную экономию условного топлива от замещения источником ВЭР котла с КПД, равным 0,84, и коэффициентом расхода теплоты на собственные нужды

 $\kappa = 0.025$.

Задача

Определить часовой расход топлива для непрерывно действующей камерной печи. Топливо-мазут. Производительность печи - 741кг/ч. Угар металла - 1,3% от массы нагреваемого металла, потеря от химического недожога $q_3 = 1,5$ % от теплоты сгорания топлива. Температура уходящих газов 1300 °C.

Определить также экономию топлива в случае подогрева воздуха до 400 °C. Потеря тепла в окружающую среду равна 473470 кДж/ч

Теплота сгорания топлива 40000 кдж/кг. Температура мазута, поступающего на горение, $t_{\text{м}} = 90$ °C, температура воздуха, поступающего на горение, 20 °C. Расход воздуха, поступающего на горение, $V_0 = 10.7 v^3/к\Gamma$, коэффициент избытка воздуха $\alpha = 1.15$.

Для повышения эффективности работы печи и снижения расхода топлива устанавливается рекуператор для подогрева воздуха, идущего на горение до температуры $400\,^{\circ}\mathrm{C}$.

Задача

Котел имеет тепловую мощность 16 МВт. В котле сжигают газ северных месторождений ($Q_{\rm H}^{\rm p}=35600$ кДж/м3; $V_0=9,44$ м3/м3; $V_{\rm r}^{\rm 0}=10,6$ м³/м³) с коэффициент избытка воздуха 1,3. Температура уходящих газов составляет 160 °C.

Как изменится КПД, если коэффициент избытка воздуха станет равным 1,5. Теплоемкость сгорания принять равной 1,4 кДж/(M^3*K).

Типовой вариант экзаменационного билета

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г. Шухова»

Кафедра энергетики теплотехнологии
Направление подготовки 13.04.01 Теплоэнергетика и теплотехника
Дисциплина Энергоэффективные процессы и установки

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №

- 1. Энерготехнологическое комбинирование в прокатном производстве
- 2. Контактные теплообменники с активной насадкой КТАНы.
- 3. Задача

Утверждено на заседании кафедры <u>« » 201 г.,</u> протокол № __.

5.2.2. Перечень контрольных материалов для защиты курсового проекта

Индикатор (ПК-2.3.)

- 1. Цель теплового расчета.
- 2. Какие особенности отходящих газов после ВТУ? Как это предусматривается в конструкции котла-утилизатора?
- 3. Отличительная особенность котлов-утилизаторов.
- 4. Основные конструктивные элементы котлов-утилизаторов.
- 5. Как определяется КПД тепло утилизационной установки?
- 6. Какая температура отходящих газов после котла? Как определили?
- 7. Какие виды теплообмена рассчитывали при выполнении теплового расчета?
- 8. Как учитывалось излучение газового потока?
- 9. Как определили паропроизводительность котла-утилизатора?
- 10. Какую конструкцию котла-утилизатора выбрали? Как это отображается в маркировке котла?

5.3. Типовые контрольные задания (материалы) для текущего контроля в семестре

Лабораторные занятия

Выполнение лабораторных работ по дисциплине осуществляется в соответствии с перечнем лабораторных работ, для каждой работы указывается цель, представляются необходимые теоретические сведения и обработка результатов.

Защита лабораторных работ возможна после допуска к выполнению, выполнения работы, обработки результатов, оформления отчета, проверки правильности выполнения задания.

Защита проводится в форме собеседования преподавателя со студентом по теме лабораторной работы. Примерный перечень контрольных вопросов для защиты лабораторных работ представлен в таблице.

No	Тема лабораторной работы	Контрольные вопросы
1	Составление тепловых балансов энерготехнологических установок (ПК-2.3.)	 1.С какой целью составляются тепловые балансы энерготехнологических установок? 2.Как рассчитать расход топлива для ведения технологического процесса? 3. Что является неизвестной величиной в системе уравнений теплового баланса? 4. Какими способами выполняется решение системы уравнений? 5.Почему тепловому расчету установки должен предшествовать материальный расчет?
2	Подбор и расчет котла-	1. Какая эффективность использования тепловой энергии в

No	Тема лабораторной работы	Контрольные вопросы
	утилизатора КУ-60 в теп-	металлургических печах?
	лотехнологическую схему металлургического произ-	2. Какая температура отходящих газов после ВТУ металлургического производства?
	водства (ПК-2.3.)	3. Как можно представить энерготехнологическую комбинированную схему в металлургическом производстве?
		4. Как можно использовать тепло отходящих газов после по-
		сле ВТУ металлургического производства?
		5. Какие исходные данные задаются для расчета котла-
		утилизатора? 6. Как определить температуру газового потока после котла-
		утилизатора?
		7. Как осуществляется маркировка котлов-утилизаторов?
		8. Конструктивные особенности котла КУ-60?
		9. Как предотвращается отложение твердых частиц на по-
		верхностях нагрева котла-утилизатора??
		10. Как определяется эффективность комбинированной схемы металлургического производства?
		металлургического производства:
3	Разработка схемы ЭТА для	1. Что такое ЭТА? Какие его основные характеристики?
	нагрева металла и выра-	2. Как можно осуществить комбинирование тепловых пото-
	ботки энергетического па-	ков при нагреве металла?
	ра. Тепловой баланс энерготехнологической уста-	3. Как вычисляется утилизированное тепло?4. Какой принцип лежит в основе разработки схемы ЭТА для
	новки. (ПК-2.3.)	нагрева металла и выработки энергетического пара?
	nobkii. (Tit 2.3.)	5. Какой аппарат предлагается использовать в схеме для вы-
		работки энергетического пара?
		6. Как определить КПД ЭТА?
		7. С какой целью составляется тепловой баланс энерготехно-
		логической установки? 8. Как определяется эффективность комбинированной схемы
		для нагрева металла и выработки энергетического пара?
		9. Каке характеристики присущи энергетическому пару? Где
		он используется?
4	Тепловой расчет контакт-	1. Приведите классификацию аппаратов, предназначенных
	ного теплообменника с активной насадкой – КТАНа	для утилизации среднепотенциальной теплоты. 2. Приведите уравнение для определения теплообменной по-
	(ПК-2.3.)	верхности.
	(121 2101)	3. Классификация теплообменников.
		4. Опишите устройство и принцип действия теплообменника
		с активной насадкой – КТАНа.
		5. Какие материальные потоки присутствуют в теплообменнике?
		нике: 6. Где находят применение теплообменники с активной
		насадкой – КТАНы?
		7. При каких условиях определяются характеристики тепло-
		носителя?.
		8. Как можно определить эффективность применения кон-
		тактного теплообменника в комбинированных теплотехнологических схемах?
5	Анализ парогазовой уста-	1. Парогазовые установки с впрыском пара.
	новки с впрыском пара	2. Тепловая схема ПГУ ВП открытого типа.
	(ПК-2.3.)	3. Термодинамический цикл ПГУ с впрыском пара.
		4. Изменение КПД газовой турбины при увеличении доли

No	Тема лабораторной работы	Контрольные вопросы
		впрыскиваемого пара. 5. Тепловая схемы ПГУ со впрыском пара и промежуточным пароперегревателем.

Практические занятия

Типовые разноуровневые задачи и задания (ПК-2.3.)

Залача

Водяной пар с начальным давлением $p_1 = 10$ МПа и степенью сухости $x_1 = 0.9$ поступает в пароперегреватель, где его температура повышается на Δt ; после перегревателя пар изоэнтропно расширяется в турбине до давления p_2 . Определить (по is-диаграмме) количество тепла (на 1 кг пара), подведенное в пароперегревателе, работу цикла Ренкина и степень сухости пара x_2 в конце расширения. Определить также термический КПД цикла и удельный расход пара. Процессы перегрева и расширения пара показать в is- и Ts-диаграммах (без масштаба). Изобразить схему простейшей паросиловой установки и дать ее краткое описание. Данные, необходимые для решения задачи, выбрать из таблицы

Таблица

Числовые да	нные к задаче
-------------	---------------

Последняя цифра шифра	0	1	2	3	4	5	6	7	8	9
Изменение темпера-										
туры в пароперегревателе Δt, °C	200	210	220	230	240	250	260	270	280	290
Предпоследняя цифра шифра	0	1	2	3	4	5	6	7	8	9
Давление пара после турбины p2, кПа	3,5	4,0	4,5	3,5	4,5	4,0	4,5	3,5	4,0	3,5

Задача

Найдите эксергетический КПД теплового насоса, использующего теплоту сточных вод с температурой 20 °C для подогрева воды, идущее на горячее водоснабжение, до температуры 55 °C. Коэффициент трансформации теплоты 3,5. Температура окружающей среды 5 °C.

Задача

Определите часовую экономию условного топлива при уменьшении температуры уходящих газов от 190 до 130 °C для котла, работающего на природном газе при следующих условиях: тепловая мощность котла 50 МВт, КПД котла брутто $h_{\kappa.бp}=79\%$, объем дымовых газов $V_{yx}=11,2$ м3 , удельная теплоемкость дымовых газов Cyx=1,34 кДж/кг·К. Определить величину экономического эффекта в рублях в час при цене газа 5000 руб./1000 м3 без НДС.

Задача

Сравните эксергетический КПД двух теплообменных аппаратов, использующихся для подогрева воды от 70 до 90 °C с использованием теплоты дымовых газов после ВТУ. В первом из них температура дымовых газов на входе в аппаратах составляет 460 °C, а на выходе из него - 340 °C. Во втором аппарате температуры дымовых газов на входе и выходе равны - 260 и 110 °C

Задача

Определить количество теплоты, отдаваемое уходящими газами котельной водяному экономайзеру (утилизатору) для получения горячей воды. Если температура газов на выходе из экономайзера 200° С, температура газов на входе в экономайзер 310° С, коэффициент избытка воздуха за экономайзером $\alpha = 1,4$. Среднюю теплоемкость газов принять равной 1,415 кДж/м 3 К , расчетный расход топлива одного котла составляет 0,25 кг/с. В котельной установлено 2 одинаковых котла, работающих на Донецком угле марки Д..

Задача

Определить количество использованной теплоты ВЭР при использовании выработанной теплоты в виде пара в котле-утилизаторе за счет теплоты уходящих газов трех промышленных печей. Температура отходящих газов из печей 700°С. Температура газов на выходе из котла- 200°С, коэффициент избытка воздуха за котлом-утилизатором $\alpha = 1,3$. Ра счетный расход топлива трех печей составляет $0,05~\text{m}^3/\text{c}$. Коэффициент, учитывающий несоответствие расчета и числа часов работы котла-утилизатора и печей $\beta=1$, коэффициент потерь теплоты котла-утилизатора в окружающую среду $\delta=0,1$ и коэффициент утилизации ВЭР $\varsigma=0,75$. Печи работают на природном газе Ставропольского месторождения

5.4. Описание критериев оценивания компетенций и шкалы оценивания

При промежуточной аттестации в форме экзамена используется следующая шкала оценивания: 2 — неудовлетворительно, 3 — удовлетворительно, 4 — хорошо, 5 — отлично.

Критериями оценивания достижений показателей являются:

Наименование	Критерий оценивания				
показателя					
оценивания					
результата обучения					
по дисциплине					
ПК-2. Способен разра	абатывать проектные решения для тепловых сетей, котельных, центральных				
тепловых пунктов,	малых теплоэлектроцентралей, теплоэнергетических, теплотехнических и				
теплотехнологических	объектов				
ПК-2.3. Разрабатыва	ет проектные решения для комбинированных энерготехнологических				
установок.					
Знания	Знание терминов, определений, понятий				
	Знание основных закономерностей, соотношений, принципов				
	Объем освоенного материала				
	Полнота ответов на вопросы				
	Четкость изложения и интерпретации знаний				

Умения	Полнота выполненного задания					
	Качество выполненного задания					
	Самостоятельность выполнения задания					
	Умение сравнивать, сопоставлять и обобщать и делать выводы					
	Качество оформления задания					
	Правильность применения теоретического материала					
Навыки	Выбор методики выполнения задания					
	Анализ результатов решения задач					
	Обоснование полученных результатов					

Оценка преподавателем выставляется интегрально с учётом всех показателей и критериев оценивания.

Оценка сформированности компетенций по показателю Знания.

Критерий	Уровень освоения и оценка					
	2	3	4	5		
Знание тер-	Не знает терминов и определений	Знает термины и определения, но до-	Знает термины и	Знает термины и		
минов, опре-	и определении	пускает неточности	определения	определения, может корректно сформу-		
делений, по-		формулировок		лировать их само-		
нятий		1-171		стоятельно		
Знание ос-	Не знает основ-	Знает основные	Знает основные	Знает основные		
новных зако-	ных закономерно-	закономерности,	закономерности,	закономерности,		
номерностей,	стей, соотноше-	соотношения,	соотношения,	соотношения,		
соотношений,	ний, принципов	принципы оценки	принципы оценки	принципы оценки		
принципов	оценки комбини-	комбинированного	комбинированного	комбинированного		
	рованного энерго-	энерготехнологи-	энерготехнологи-	энерготехнологи-		
	технологического	ческого использо-	ческого использо-	ческого использо-		
	использования ма-	вания материаль-	вания материаль-	вания материаль-		
	териальных и теп-	ных и тепловых	ных и тепловых	ных и тепловых		
	ловых потоков;	потоков;	потоков;	потоков;		
			; их интерпрети-	; может самостоя-		
			рует и использует	тельно их выве-		
				сти, объяснить и		
				использовать		
Объем осво-	Не знает значи-	Знает только ос-	Знает материал	Обладает твердым и		
енного мате-	тельной части ма-	новной материал	дисциплины в до-	полным знанием		
риала	териала дисципли-	дисциплины, не	статочном объеме	материала дисци-		
	ны	усвоил его деталей		плины, владеет до-полнительными зна-		
				ниями		
Полнота от-	Не дает ответы на	Дает неполные от-	Дает ответы на во-	Дает полные, раз-		
ветов на во-	большинство во-	веты на большин-	просы, но не все –	вернутые ответы на		
просы	просов	ство вопросов	полные	поставленные во-		
	H 6	I/	II	просы		
Четкость из-	Излагает знания без логической после-	Излагает знания с нарушениями в ло-	Излагает знания без нарушений в логи-	Излагает знания в логической после-		
ложения и	дователь-ности	гической последо-	ческой последова-	довательности, са-		
интерпрета-	Aobaresib noom	ватель-ности	тель-ности	мостоятельно их		
ции знаний		Burell House		интерпретируя и		
				анализируя		
	Не иллюстрирует	Выполняет пояс-	Выполняет пояс-	Выполняет пояс-		
	изложение пояс-	няющие схемы и	няющие рисунки и	няющие рисунки и		
	няющими схема-	рисунки небрежно	схемы корректно и	схемы точно и ак-		

ми, рисунками и примерами	и с ошибками	понятно	куратно, раскрывая полноту усвоенных знаний
Не излагает или	Допускает неточ-	Грамотно и по	Грамотно и точно
неверно излагает и	ности в изложе-	существу излагает	излагает знания,
интерпретирует	нии и интерпрета-	знания	делает самостоя-
знания	ции знаний		тельные выводы

Оценка сформированности компетенций по показателю Умения.

Критерий	Уровень освоения и оценка						
	2	3	4	5			
Полнота выполненного задания	Задание не выполнено	Задание выполнено не в полном объеме	Задание выполнено полностью	Задание выполнено полностью, рациональным способом			
Качество выпол- ненного задания	Имеются существенные ошибки при использовании общей методики выполнения задания	Задание выполнено с существенными неточностями, не носящими принципиальный характер	Задание выполнено с небольшими неточностями	Задание выполнено без ошибок			
Самостоятельность выполнения задания	Не может выполнить задание, в том числе и с дополнительной помощью	Может выполнить задание только с дополнительной помощью	Выполняет задание в основном самостоятельно	Самостоятельно выполняет задание			
Умение сравнивать, сопоставлять и обобщать и делать выводы	Не умеет сравнивать, сопоставлять и обобщать, а также делать выводы	Допускает ошиб- ки при сопостав- лении, обобще- нии и при форму- лировании выво- дов	Умеет сравнивать, сопоставлять и обобщать, но допускает небольшие неточности при формулировании выводов	Умеет сравнивать, сопоставлять и обобщать, а также делает верные выводы			
Качество оформ- ления задания	Задание оформлено настолько неряшливо, что не поддается проверке	Задание оформлено неаккуратно, отсутствуют необходимые пояснения и ссылки на используемые источники	Задание оформлено аккуратно, с ссылками на используемые источники	Задание оформлено аккуратно, с необходимыми пояснениями и ссылками на используемые источники			
Правильность применения теоретического материала	При применении теоретического материала допущены ошибки, относящиеся к методике выполнения задания	При применении теоретического материала допущены ошибки, не носящие принципиальный характер	Теоретический материал применен и интерпретирован в целом правильно, но с несущественными неточностями	Теоретический материал применен и интерпретирован правильно			

Оценка сформированности компетенций по показателю <u>Навыки</u>.

Критерий Уровень освоения и оценка	
------------------------------------	--

	2	3	4	5
Выбор методики	Неверно выбрана	Методика выпол-	Методика выпол-	Выбрана верная
выполнения зада-	методика выпол-	нения задания	нения задания	или наиболее ра-
ния	нения задания	выбрана в целом	выбрана в целом	циональная мето-
		верно, но имеют-	верно, но имеют-	дика выполнения
		ся незначитель-	ся недочеты, не	задания
		ные неточности	относящиеся к	
		при описании ос-	основным рас-	
		новных расчет-	четным зависи-	
		ных зависимостей	мостям	
Анализ результа-	Не произведен	Анализ резуль-	Допускаются	Произведен ана-
тов решения задач	анализ результа-	татов, получен-	незначительные	лиз результатов
	тов решения за-	ных при реше-	неточности в хо-	решения задачи
	дачи при необ-	нии задачи про-	де анализа ре-	и сделаны ис-
	ходимости тако-	водится только	зультатов реше-	черпывающие
	го анализа	при помощи	ния задачи	выводы
		преподавателя		
Обоснование по-	Представляемые	Имеются замеча-	Представляемые	Представляемые
лученных резуль-	результаты не	ния к полученным	результаты обос-	результаты обос-
татов	обоснованы	результатам, от-	нованы и в целом	нованы, четко ар-
14102		сутствует в доста-	аргументированы,	гументированы с
		точной степени их	имеются ссылки на	указанием ссылок
		обоснование	нормативные,	на нормативные,
			справочные и	справочные и
			учебно-	учебно-
			методические ис-	методические ис-
			точники	точники

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

6.1. Материально-техническое обеспечение

<u>Помещения для самостоятельной работы</u>: читальный зал библиотеки, учебная аудитория

No	Наименование специальных помещений и помещений для самостоятельной	Оснащенность специальных помещений и по- мещений для самостоятельной работы
	работы	
	Читальный зал библиотеки для само-	Специализированная мебель; компьютерная
	стоятельной работы	техника, подключенная к сети «Интернет»,
		имеющая доступ в электронную информацион-
		но-образовательную среду
	Учебная аудитория для проведения лекционных и практических занятий,	Специализированная мебель; мультимедийный проектор, переносной экран, ноутбук, лабора-
	консультаций, текущего контроля, промежуточной аттестации, самостоятельной работы	торные стенды и оборудование
	Методический кабинет	Специализированная мебель; мультимедийный проектор, переносной экран, ноутбук

6.2. Лицензионное и свободно распространяемое программное обеспечение

№	Перечень лицензионного программного обеспечения.	Реквизиты подтверждающего документа	
	Microsoft Windows 10 Корпора-	Соглашение Microsoft Open Value Subscription	
	тивная	V6328633. Соглашение действительно с 02.10.2017	
		по 31.10.2023). Договор поставки ПО	
		0326100004117000038-0003147-01 от 06.10.2017	
	Microsoft Office Professional Plus	Соглашение Microsoft Open Value Subscription	
	2016	V6328633. Соглашение действительно с 02.10.2017	
		по 31.10.2023	
	Google Chrome	Свободно распространяемое ПО согласно условиям	
		лицензионного соглашения	
	Mozilla Firefox	Свободно распространяемое ПО согласно условиям	
		лицензионного соглашения	

6.3. Перечень учебных изданий и учебно-методических материалов

- 1. Дзюзер, В. Я. Теплотехника и тепловая работа печей: учеб. пособие для студентов, обучающихся по направлению подгот. бакалавров и магистров "Стр**-во"** всех форм обучения / В. Я. Дзюзер. 2-е изд., испр. и доп. Санкт-Петербург; Москва; Краснодар : Лань, 2016. 383 с.
- 2. Лисиенко, В.Г. Совершенствование и повышение эффективности энерготехнологий и производств / Лисиенко В.Г. М.: Теплотехник, 2010. 688 с.
- 3. Трубаев, П.А. Исследование процессов теплообмена в материалах и аппаратах цементной технологии / П.А. Трубаев, Б.М. Гришко, В.А. Украинский, В.В. Сухорослова Белгород: Изд-во БГТУ, БИЭИ, 2013. 190 с.
- 4. Гашо, Е.Г. Методические рекомендации по расчету эффектов от реализации мероприятий по энергосбережению и повышению энергетической эффективности: Справочно-аналитический документ / Е.Г. Гашо, СВ. Гужов, П.А. Трубаев и др. М.: Аналитический центр при Правительстве Российской Федерации, 2016. 56 с.
- 1. Шубин, В.И. Энергосбережение и охрана окружающей среды при производстве цемента / В.И. Шубин, Л.Н. Гриневич и др. М.: НИИЦЕМЕНТ, 2006. 55 с.
- 2. Винтовкин, А.А. Технологическое сжигание и использование топлива А.А. Винтовкин, М.Г. Ладыгичев, Ю.М. Голдобин, Г.П. Ясников. М.: Теплотехник, 2005. $288 \, \mathrm{c}$.
- 3. Кубин, М. Сжигание твердого топлива в кипящем слое / Кубин М. М.: Энергоатомиздат, 1991. 144 с.
- 4. Тодес, СМ. Аппараты с кипящим зернистым слоем / Тодес СМ., Цитович СБ. Д.: Химия, 1981. -296 с.
- 5. Маршак, Ю.А. Топочные устройства с вертикальными циклонными камерами / Маршак Ю.А. М.: Энергия, 1966. 320 с.
- 6. Мухленова, И.П. Расчеты аппаратов кипящего слоя: Справочник / Под ред. И.П. Мухленова, В.С. Сажина, В.Ф. Фролова. Д.: Химия, 1986. 352 с.

Перечень интернет-ресурсов

1. https://gisee.ru/about/ - Государственная информационная система в области энергосбережения и повышения энергетической эффективности. Справочно-информационный центр.

- 2. http://www.energy2020.ru/ «ЭнергоэффективнаяРоссия.РФ». Интернетпортал о современных технологиях энергосбережения и повышении энергетической эффективности.
 - 3. http://www.energosovet.ru /- Портал по энергосбережению «Энергосовет».
- 4. https://soft.abok.ru/ ABOK-Софт Онлайн расчеты и программы для проектировщиков в области ОВК. Полезная информация для специалистов.
- 5. https://www.abok.ru/pages.php?block=en_mag Некоммерческое партнерство инженеров. Библиотека научных статей журналов «Энергосбережение» И «АВОК».
- 6. http://www.energyexpert.ru/ «ЭнергоЭксперт». Региональное энергосбережение; программы и стратегии повышения энергоэффективности; реализация, мониторинг и сопровождение городских и муниципальных программ энергосбережения.

Справочная и нормативная литература

- 1. Теплоэнергетика и теплотехника: Справочная серия в четырех книгах / Под ред. Клименко А.В., Зорина В.М. М.: Изд-во МЭИ, 2004.-528 с., 564 с., 648 с., 632 с.
- 2. Справочник по теплообменникам в 2-х томах. Пер. с английского, М.: Энергоатомиздат, 1987 г.
- 3. Промышленная теплоэнергетика и теплотехника. Под общ. ред. Григорьева В.А. и Зорина В.М. М.: 1991 г. тт. 1-4.
- 4. Смирнов, А. Д. Справочная книжка энергетика: [справ.] / А. Д. Смирнов, К. М. Антипов. 4-е изд., перераб. и доп. М.: Энергоатомиздат, 2006.
- 5. Справочник по пыле- и золоулавливанию. Изд. 2, переработанное под общей редакцией Русанова А.А. М.: Энергоатомиздат, 1983 г.
- 6. Промышленная теплоэнергетика и теплотехника. Справочник. Изд. 2 под общей редакцией Григорьева В.А., Зорина В.М. Книга 4. М.: Энергоатомиздат, 1991 г.

Перечень интернет-ресурсов, профессиональных баз данных, информационно-справочных систем

- 1. http://www.iprbookshop.ru/28374.html
- 2. http://www.iprbookshop.ru/81004.html
- 3. http://www.iprbookshop.ru/20458.html
- 4. http://www.iprbookshop.ru/20459.html
- 5. http://www.iprbookshop.ru/21761.html
- 6. http://www.iprbookshop.ru/33625.html