МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В. Г. Шухова)

СОГЛАСОВАНО
Директор института
магистратуры
И.В. Ярмоленко
20 21 г.

УТВЕРЖДАЮ
Директор института ЭИТУС
А. В. Белоусов
20 » 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

Системы технического зрения и обработка изображений в робототенике

Направление подготовки (специальность):

15.04.06 Мехатроника и робототехника

Направленность программы (профиль, специализация): Интеллектуальные робототехнические системы и комплексы

	Квалификация:	
	магистр	
	Форма обучения	
Институт _	Магистратуры	
Кафедра _	Технической кибернетики	

Рабочая программа составлена на основании требований:

- Федерального государственного образовательного стандарта высшего образования 15.04.06 Мехатроника и робототехника (уровень магистратуры), утвержденного приказом Министерства науки и высшего образования Российской Федерации № 1023 от 14 августа 2020 г.
- учебного плана, утвержденного ученым советом БГТУ им. В. Г. Шухова в 20<u>21</u> году.

Составитель (составители): —	Col	А. А. Степовой
(ученая степень и звание)	(подпись)	(инициалы, фамилия)
Рабочая программа обсуждена н	на заселании кафел	Inti
« <u> </u>		
Заведующий кафедрой:д-р техн. наук, проф (ученая степень и звание)	Star	В. Г. Рубанов
(у теная етенень и звание)	Уподпись)	(инициалы, фамилия)
(наименование Ваведующий кафедрой:	ой кибернетики кафедры/кафедр)	
	(подпись)	В. Г. Рубанов (инициалы, фамилия)
<u>(</u>	21 г.	
Рабочая программа одобрена ме	тодической комис	сией института
(<u>20</u>) <u>o</u> 5 <u>20</u>	г., проток	ол №9
Тредседатель:	21	
канд. техн. наук, доц. (ученая степень и звание)	(подпись)	А. Н. Семернин

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Категория (группа) компетенций	Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Наименование показателя оценивания результата обучения по дисциплине
	ПК-1. Способен разрабатывать модули мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационносенсорные и управляющие модули, с применением методов формальной логики и методов искусственного интеллекта		в результате освоения дисциплины обучающийся должен Знать: принципы построения, структуру, общий состав (основные элементы и модули), классификацию, основные характеристики и методики их расчета, особенности технической реализации робототехнических систем технического зрения; основные виды пакетов программ и инструментальных средств, применяемых при разработке программного обеспечения систем технического зрения; принципы наладки, настройки образцов мехатронных и робототехнических систем, их подсистем и отдельных модулей; принципы построения, особенности технической реализации составных частей мехатронных и робототехнических систем технического зрения; Уметь: разрабатывать системы технического зрения робототехнических комплексов, включая их аппаратную часть и программное обеспечение, выполнять их настройку; реализовывать разрабатываемые алгоритмы компьютерного зрения с использованием языков программирования; применять на практике теоретические знания при решении практических задач разработки мехатронных модулей и робототехнические комплексов с применением систем технического зрения
			Владеть:

Категория (группа) компетенций	Код и наименование компетенции	Код и наименование индикатора достижения	Наименование показателя оценивания результата обучения по дисциплине
		Компетенции ПК-1.3. Использует	проектирования и реализации законченной программно-аппаратной системы с использованием готовых модулей и компонент; разработки мехатронных модулей и робототехнических комплексов с применением систем технического зрения; навыками программирования на языках высокого уровня. В результате освоения дисци-
		методы обработки изображений при разработке модулей и подсистем ме-хатронных комплексов, включая исполнительные, информационносенсорные и управляющие модули	плины обучающийся должен Знать: Способы получения, хранения и представления цифровых изображений; основные современные методы обработки и анализа цифровых изображений. применительно к решению робототехнических задач; базовые алгоритмические решения по обработке изображений; типовые решения, библиотеки программных модулей, шаблоны, классы объектов, используемые при разработке программного обеспечения по обработке изображений; методы и средства проектирования программного обеспечения при реализации методов обработки изображений; принципы наладки, настройки образцов мехатронных и робототехнических систем, их подсистем и отдельных модулей; Уметь: производить выбор методов обработки изображений образов, наиболее эффективных в текущих условиях применения робототехнической системы; применять
			математический и алгоритмический аппарат решения задач анализа и обработки

Категория (группа) компетенций	Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Наименование показателя оценивания результата обучения по дисциплине
			изображений, распознавания образов; использовать методы обработки изображений при разработке модулей и подсистем мехатронных комплексов, включая исполнительные, информационно-сенсорные и управляющие модули; реализовывать разрабатываемые алгоритмы обработки, анализа изображений, распознавания образов с использованием языков программирования
			Владеть: современными методами распознавания образов, обработки и анализа изображений в системах технического зрения; основами автоматизации процесса распознавания изображений; навыками разработки и реализации алгоритмов для решения задач обработки и анализа изображений; современными технологиями в области проектирования систем обработки изображений в робототехнике

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

1. Компетенция ПК-1. Способен разрабатывать модули мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов формальной логики и методов искусственного интеллекта.

Данная компетенция формируется следующими дисциплинами.

Стадия	Наименования дисциплины		
1	Методы машинного обучения		
2	Системы технического зрения и обработка изображений в робототехнике		
3	Интеллектуальные робототехнические комплексы		

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет <u>6</u> зач. единиц, <u>216</u> часов. Дисциплина реализуется в рамках практической подготовки. Форма промежуточной аттестации <u>экзамен</u>

Εντη γιαργιού ποροπια		Семестр
Вид учебной работы	часов	№ 2
Общая трудоемкость дисциплины, час	216	216
Контактная работа (аудиторные занятия), в том числе:	73	73
лекции	34	34
лабораторные	34	34
практические	-	-
групповые консультации в период теоретического обучения	5	5
и промежуточной аттестации		
Самостоятельная работа студентов, включая индивиду-	143	143
альные и групповые консультации, в том числе:		
курсовой проект	-	-
курсовая работа	36	36
расчетно-графическое задание	1	-
индивидуальное домашнее задание	1	-
самостоятельная работа на подготовку к аудиторным заня-	71	71
тиям (лекции, практические занятия, лабораторные занятия)		
экзамен	36	36

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Наименование тем, их содержание и объем

Курс 1 Семестр 3

				гический ой нагру	-
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	работа на подготовку к аудиторным
1	2	3	4	5	6
1.	Введение в системы технического зрения				
1.1.	Назначение систем технического зрения (СТЗ). Основные области применения технического зрения в робототехнике. Задачи, решаемые посредством СТЗ. Понятия систем технического, машинного и компьютерного зрения.	1	-	-	2
1.2.	Архитектура системы технического зрения(СТЗ). Классификация СТЗ. Требования, предъявляемые СТЗ. Виды алгоритмов обработки зрительной информации в СТЗ. Обзор алгоритмов обработки изображений. Обобщенный алгоритм обработки зрительной информации. Практические примеры решения задачи машинного зрения в робототехнике.	1	-	-	2
2.	Цифровое изображение	1 4			
2.1.	Методы и аппаратные средства регистрации и ввода изображений в память компьютера. Камеры технического зрения. Стереокамеры. Основная модель формирования изображения. Понятие о видеосигнале. Методы получения потоковых данных изображений и видеосигналов с цифровых систем.	1	-	2	4
2.2.	Основы цифрового представления изображений. Методы и форматы для хранения изображений. Типы изображений: растровое, векторное. Виды изображения: бинарные, полутовые, палитровые, полноцветные. Форматы данных: double и uint8. Форматы файлов изображений. Форматы хранения видеопотоков. Принципы сжатия изображений без потерь и с потерями. Кодирование цветных изображений. Теория цвета. Квантование цвета. Цветовые пространства и стандарты цветового кодирования.		-	1	2
2.3.	Основы расчета систем технического зрения. Энергетические (светотехнические расчеты). Выбор структуры системы технического зрения. Определение объема видеоинформации, перерабатываемой СТЗ. Расчет емкости памяти вычислительных устройств СТЗ. Расчет требуемого быстродействия вычисли-	1	-	-	2

	тельной системы. Выбор структуры вычислительных средств СТЗ.				
3.	Базовые алгоритмы обработки цифровых изображе	— <u>—</u> ений			
3.1.	Предварительная обработка изображений: яркостная и цветовая коррекция, обработка гистограмм. Сглаживание и повышение резкости цветных изображений. Двумерное дискретное преобразование Фурье и его обращение, спектр сигнала, фазовый спектр. Основы фильтрации в частотной области, передаточная функция фильтра, алгоритм частотной фильтрации, соответствие между пространственными и частотными фильтрами.	2	-	3	4
3.2.	Алгоритмы анализа бинарных изображений. Получение бинарных изображений. Геометрические характеристики бинарного изображения. Кодирование бинарных изображений. Кодирования с переменной длиной кодовой последовательности. Коды Фримана. Понятие дискретного пути, границы, области, кодирование границ. Маркировка областей. Применение масок к бинарным изображениям. Логические операции. Морфологические операции.	2	-	2	4
3.3.	Пространственный анализ изображений. Пространственная фильтрация: пространственная корреляция и свертка. Использование масок. Пространственные методы улучшения изображений. Формирование масок пространственных фильтров, сглаживающие пространственные фильтры, линейные сглаживающие фильтры. Методы повышения резкости с помощью пространственных фильтров: использование вторых производных, фильтрация с подъемом высоких частот, использование производных первого порядка для повышения резкости изображений. Гауссовская и ЛОГ-фильтрация для обнаружения краев.	2	-	4	6
3.4.	Алгоритмы автоматической сегментации изображений. Постановка задачи сегментации. Выращивание областей, разделение и слияние областей. Сегментация по морфологическим водоразделам, построение перегородок, алгоритм сегментации по водоразделам, использование маркеров. Преобразование Хафа и Радона. Интегральное изображение. Нахождение контуров и операции с ними. Края и их обнаружение. Извлечение геометрических признаков из изображения. Методы выделения краев, анализа контуров (цепные кода, полигональная аппроксимация). Методы выделения параметрических кривых на изображении.	2	-	2	4
3.5.	Алгоритмы обнаружения особых точек на изображении. Применение особых точек. Теория особых точек. Детекторы особенностей. Описание особенностей. Поиск соответствий.	2	-	2	4
3.6.	Геометрические преобразования. Гомографии. Модель фотографической камеры. Камера-обскура.	4	-	3	7

	Параметры камеры. Аберрации объектива. Однород-				
	ные координаты. Модель перспективной проекции.				
	Внутренние и внешние параметры камеры. Геомет-				
	рическая калибровка камеры. Алгоритмы рекон-				
	струкции геометрии по одному изображению. Пер-				
	спективное преобразование плоскости. Интерактив-				
	ные алгоритмы моделирования городских сцен.				
	Согласование нескольких изображений. Геометриче-				
	ские свойства двух изображений. Фундаментальная				
	матрица. Сопоставление точечных особенностей. Сегментация ложных соответствий. Реконструкция				
	геометрии по двум и более изображениям. Триангу-				
	ляция. Пассивное стерео. Трехмерный лазерный сканер. Текстурирование. Трёхмерная реконструкция				
	по изображениям				
3.7.	Методы обнаружения объектов на изображении:	3		3	6
3.7.	образы и классы образов, основные методы класси-	3	_	3	0
	фикации. Признаки, используемые для описания				
	объектов. Классификация по ближайшему среднему				
	значению. Использования дерева решений для распо-				
	значению. Использования дерева решении для распо- знавания. Детектор Viola-Jones. Boosting Детектор				
	Dalal-Triggs. Линейная SVM.				
3.8.	Анализ серии последовательных изображений.	4		4	8
3.6.	Построение модели фона. Трассировка множества	4	_	- 1	0
	объектов. Алгоритм Mean-Shift. Обнаружение сопро-				
	вождение. Оптический поток. Основы распознавания				
	видео – Выделение и отслеживание				
	объектов, распознавание событий.				
3.9.	Нейросетевые методы обработки изображений.	4	_	4	8
3.7.	Искусственные нейронные сети, искусственный	·		·	
	нейрон. Многослойные нейронные сети, нейронные				
	сети с обратными связями. Обучение нейронной сети				
	с учителем и без учителя. Персептрон, проблемы с				
	линейной разделимостью. Использование персеп-				
	трона для распознавания в случае двух классов.				
	Линейно разделимые классы. Сверточные НС. Глу-				
	бинные модели НС				
4.	Применение СТЗ в робототехнике				
4.1.	Применение систем технического зрения Навигация.	2		2	4
	Определение структуры по движению.				
4.2.	Промышленные системы технического зрения, их	2		2	4
	структура, разновидности. Подходы к применению				
	СТЗ в составе робототехнических комплексов.				
	Проектирование ПО для управления робототехниче-				
	скими системами с применением СТЗ.				
1	ВСЕГО	34	l <u>-</u>	34	71

4.2. Содержание практических (семинарских) занятий

Не предусмотрено учебным планом.

4.3. Содержание лабораторных занятий

№ п/п	№ раздела дисциплины (в соответствии с п.4.1)	Тема лабораторного занятия	Колич. часов	Самостоятель ная работа на подготовку к аудиторным занятиям
		семестр №3		
1.	2	Захват видеопотока с камер	3	3
2.	3	Предварительная обработка изображений: яркостная и цветовая коррекция	3	3
3.	3	Алгоритмы анализа бинарных изображений. Применение морфологических фильтров	2	2
4.	3	Пространственный анализ изображений. Корреляция и свертка	4	4
5.	3	Алгоритмы автоматической сегментации изображений. Выделение краев на изображении. Обнаружение прямых. Обнаружение окружностей	2	2
6.	3	Алгоритмы обнаружения особых точек на изображении	2	2
7.	3	Геометрические преобразования	3	3
8.	3	Методы обнаружения объектов на изображении. Детектор пешеходов	3	3
9.	3	Анализ серии последовательных изображений. Обработка видеопоследовательностей Вычисление оптического потока. Трассировка методом Меан-Shift. Трекинг объектов	4	4
10.	3	Нейросетевые методы обработки изображений для решения задач технического зрения	4	4
11.	4	Практическое применение систем технического зрения.	4	4
		ИТОГО:	34	34

4.4. Содержание курсовой работы

В процессе выполнения курсового проекта / работы осуществляется контактная работа обучающегося с преподавателем. Консультации проводятся в аудитория и/или посредствам электронной информационно-образовательной среды университета.

Целью курсовой работы является выработка у студентов практических навыков по проектированию систем технического зрения.

Выполнение курсовой работы начинается с разработки технического задания и завершается составлением отчета, в котором должно содержаться описание всей проделанной работы.

Данные цели проявляются через следующие конкретные задачи курсовой работы:

- систематизация, закрепление, углубление и расширение теоретических знаний, полученных при изучении данной дисциплины, а также приобретение практических навыков решения комплексных задач;
- привитие навыков самостоятельной работы по подбору литературы, работы с научной литературой и иными информационными источниками;
- умение самостоятельно систематизировать и излагать знания, полученные в процессе самостоятельного изучения литературы;
- привитие навыков научно-исследовательской работы, использование анализа и самостоятельных выводов.

В результате выполнения курсовой работы студент должен научиться:

- проектировать и реализовывать систему технического зрения в соответствии с основными этапами ее разработки;
- строить схему алгоритма работы программной части системы в соответствии с требованиями ГОСТ 19.701 90;
- уметь тестировать программную часть системы;
- анализировать результаты работы программы и делать соответствующие выводы.

Процесс выполнения работы состоит из следующих этапов:

- выбор темы и беседа с руководителем;
- сбор материала, поиск литературы по теме, подготовка библиографии, составление личного рабочего плана;
- подготовка первого варианта;
- сдача первого варианта курсовой работы руководителю;
- доработка текста по замечаниям, окончательное оформление;
- представление работы на кафедре.

Тематика курсовых работ разрабатывается преподавателем, ежегодно дополняется и уточняется. Темы курсовых работ рассматриваются и утверждаются на заседании комиссии. Студенты выбирают тему курсовой работы самостоятельно, из предложенного списка. Незначительное изменение темы разрешается только по согласованию с преподавателем.

На выполнение курсовой работы предусмотрено 36 часов самостоятельной работы студента.

Перечень тем курсовых работ:

- 1. Проектирование системы технического зрения для контроля качества изготовления деталей корпусной мебели.
- 2. Проектирование системы технического зрения для интеллектуального регулирования движения.
- 3. Проектирование системы технического зрения для контроля качества монтажа печатных плат.
- 4. Проектирование системы технического зрения для беспилотного автомобиля.
- 5. Проектирование системы технического зрения для служб охраны и безопасности.
- 6. Проектирование системы технического зрения для беспилотного летательного аппарата.
- 7. Проектирование системы технического зрения для клинингового робота.

- 8. Проектирование электронного поводыря
- 9. Проектирование системы технического зрения для контроля качества рулонных материалов

4.5. Содержание расчетно-графического задания, индивидуальных домашних заданий

Не предусмотрено учебным планом.

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1. Реализация компетенций

1. Компетенция ПК-1. Способен разрабатывать модули мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов формальной логики и методов искусственного интеллекта

Наименование индикатора достижения компетенции	Используемые средства оценивания
ПК-1.2. Разрабатывает мехатронные модули и робототехнические комплексы с применением систем технического зрения	защита лабораторных работ; курсовая работа; экзамен
ПК-1.3. Использует методы обработки изображений при разработке модулей и подсистем мехатронных комплексов, включая исполнительные, информационносенсорные и управляющие модули	защита лабораторных работ; курсовая работа; экзамен

5.2. Типовые контрольные задания для промежуточной аттестации

5.2.1. Перечень контрольных вопросов (типовых заданий) для экзамена

Промежуточная аттестация осуществляется в конце семестра после завершения изучения дисциплины в форме экзамена.

Экзамен включает 2 теоретических вопроса. Для подготовки к ответу на вопросы и задания билета, который студент вытаскивает случайным образом, отводится время в пределах 120 минут. После ответа на теоретические вопросы билета, преподаватель задает дополнительные вопросы.

Распределение вопросов и заданий по билетам находится в закрытом для студентов доступе. Ежегодно по дисциплине на заседании кафедры утверждается комплект билетов для проведения экзамена по дисциплине. Экзамен является наиболее значимым оценочным средством и решающим в итоговой отметке учебных достижений студента.

Перечень контрольных вопросов (типовых заданий) для экзамена:

No ⊤/¬	Наименование раздела	Содержание вопросов (типовых заданий)
п/п 1	дисциплины Введение в системы технического зрения	 Назначение систем технического зрения (СТЗ). Основные области применения технического зрения в робототехнике. Задачи, решаемые посредством СТЗ. Понятия систем технического, машинного и компьютерного зрения. Архитектура системы технического зрения(СТЗ). Классификация СТЗ. Требования, предъявляемые СТЗ. Виды алгоритмов обработки зрительной информации в СТЗ. Обзор алгоритмов обработки изображений.
2	Цифровое изображение	Обобщенный алгоритм обработки зрительной информации. Практические примеры решения задачи машинного зрения в робототехнике. 4. Методы и аппаратные средства регистрации и ввода изображений в память компьютера. Основная модель
		формирования изображения. 5. Понятие о видеосигнале. Методы получения потоковых данных изображений и видеосигналов с цифровых систем. 6. Основы цифрового представления изображений. Типы изображений. 7. Принципы сжатия изображений без потерь и с потерями. Кодирование цветных изображений. Теория цвета. Квантование цвета. Цветовые пространства и стандарты цветового кодирования. 8. Основы расчета систем технического зрения. Энергетические (светотехнические расчеты). Выбор структуры системы технического зрения. Определение объема видеоинформации, перерабатываемой СТЗ.
3	Базовые алгоритмы обработки цифровых изображений	 Предварительная обработка изображений: яркостная и цветовая коррекция, обработка гистограмм. Сглаживание и повышение резкости цветных изображений. Двумерное дискретное преобразование Фурье и его обращение, спектр сигнала, фазовый спектр. Основы фильтрации в частотной области, передаточная функция фильтра, алгоритм частотной фильтрации, соответствие между пространственными и частотными фильтрами. Алгоритмы анализа бинарных изображений. Получение бинарных изображений. Геометрические характеристики бинарного изображения. Кодирование бинарных изображений. Морфологические операции. Пространственный анализ изображений. Пространственная фильтрация: пространственная корреляция и свертка. Использование масок. Пространственные методы улучшения изображений. Формирование масок пространственных фильтров, сглаживающие пространственные фильтры, линейные сглаживающие фильтры. Алгоритмы автоматической сегментации изображений. Постановка задачи сегментации. Выращивание обла-

- стей, разделение и слияние областей. Сегментация по морфологическим водоразделам, построение перегородок, алгоритм сегментации по водоразделам, использование маркеров.
- 16. Преобразование Хафа и Радона. Интегральное изображение. Нахождение контуров и операции с ними. Края и их обнаружение. Извлечение геометрических признаков из изображения. Методы выделения краев, анализа контуров (цепные кода, полигональная аппроксимация).
- 17. Алгоритмы обнаружения особых точек на изображении. Применение особых точек. Теория особых точек. Детекторы особенностей. Описание особенностей. Поиск соответствий.
- 18. Геометрические преобразования. Гомографии.
- 19. Модель фотографической камеры. Камера-обскура. Параметры камеры. Аберрации объектива. Однородные координаты. Модель перспективной проекции. Внутренние и внешние параметры камеры. Геометрическая калибровка камеры.
- 20. Алгоритмы реконструкции геометрии по одному изображению. Перспективное преобразование плоскости. Интерактивные алгоритмы моделирования городских сцен.
- 21. Согласование нескольких изображений. Геометрические свойства двух изображений. Фундаментальная матрица. Сопоставление точечных особенностей. Сегментация ложных соответствий.
- 22. Реконструкция геометрии по двум и более изображениям. Триангуляция. Пассивное стерео. Трехмерный лазерный сканер.
- 23. Трёхмерная реконструкция по изображениям
- 24. Методы обнаружения объектов на изображении: образы и классы образов, основные методы классификации. Признаки, используемые для описания объектов. Классификация по ближайшему среднему значению.
- 25. Использования дерева решений для распознавания.
- 26. Детектор Viola-Jones. Boosting
- 27. Детектор Dalal-Triggs. Линейная SVM.
- 28. Анализ серии последовательных изображений. Построение модели фона. Трассировка множества объектов.
- 29. Алгоритм Mean-Shift. Обнаружение сопровождение. Оптический поток. Основы распознавания видео Выделение и отслеживание объектов, распознавание событий.
- 30. Нейросетевые методы обработки изображений. Искусственные нейронные сети, искусственный нейрон.
- 31. Многослойные нейронные сети, нейронные сети с обратными связями. Обучение нейронной сети с учителем и без учителя.
- 32. Персептрон, проблемы с линейной разделимостью.
- 33. Использование персептрона для распознавания в случае двух классов. Линейно разделимые классы.

		34. Сверточные НС. Глубинные модели НС
4	Применение СТЗ в робототехнике	 35. Применение систем технического зрения Навигация. Определение структуры по движению. 36. Промышленные системы технического зрения, их структура, разновидности. Подходы к применению СТЗ в составе робототехнических комплексов. Проектирование ПО для управления робототехническими системами с применением СТЗ.

5.2.2. Перечень контрольных материалов для защиты курсовой работы

- 1. По какому принципу проводился расчет системы технического зрения и подбор элементов.
- 2. Какие методы использовались для предварительной обработки изображений. Каковы их основные принципы работы?
- 3. Пространственный анализ изображений. Пространственная фильтрация: пространственная корреляция и свертка. Использование масок.
- 4. Какие методы использовались для пространственной обработки изображений. Каковы их основные принципы работы?
- 5. Какой принцип работы детектора Viola-Jones. Boosting
- 6. Применялись ли методы автоматической сегментации изображений. Какие? Принцип их работы?
- 7. Какие геометрические преобразования могут применятся в системах технического зрения и для чего?
- 8. Какой принцип работы детектора детектора Dalal-Triggs.
- 9. Какими методами решается задача согласования нескольких изображений?
- 10. Для решения каких задач может понадобиться реконструкция геометрии по двум и более изображениям?
- 11. Какие бывают методы обнаружения объектов на изображении?
- 12. Какой принцип работы алгоритма Mean-Shift?

5.3. Типовые контрольные задания (материалы) для текущего контроля в семестре

В лабораторном практикуме по дисциплине представлен перечень работ, обозначены цель и задачи, необходимые теоретические и методические указания к работе, перечень контрольных вопросов.

Защита лабораторных работ возможна после проверки правильности выполнения задания, оформления отчета. Защита проводится в форме собеседования преподавателя со студентом по теме работы. Примерный перечень контрольных вопросов для защиты практических работ представлен в таблице.

No	Тема лабораторной	Контрольные вопросы	
	работы		
1		 Какие основные области применения технического зрения есть в робототехнике? Опишите методы и аппаратные средства регистрации и 	
	Захват видеопотока с камер	ввода изображений в память компьютера. 3. Приведите типы камеры технического зрения. 4. Опишите основную модель формирования изображения. 5. Какие методы получения потоковых данных изображений и видеосигналов с цифровых систем вы знаете? 6. Изложите основные методы и форматы для хранения изображений. 7. Как рассчитываются систем технического зрения.	
2	Предварительная обра- ботка изображений: яркостная и цветовая коррекция	 Как подобрать структуру системы технического зрения? Назовите основные методы яркостной и цветовой коррекции изображений. Опишите метод выравнивания гистограммы Запишите формулы гамма коррекции и линейного преобразования. 	
3	Алгоритмы анализа бинарных изображений. Применение морфологических фильтров	 Приведите и опишите алгоритмы анализа бинарных изображений. Назовите способы получения бинарных изображений. Логические операции с бинарными изображениями Приведите примеры морфологических операций с бинарными изображениями. Каково назначение таких операций. 	
4	Пространственный анализ изображений. Корреляция и свертка	 Опишите теоретические аспекты пространственного анализа изображений. Как проводится операция свертки? В чем отличие операций корреляции и свертки. Как формируются маски пространственных фильтров Приведите примеры масок пространственных фильтров вы и их назначение. 	
5	Алгоритмы автоматической сегментации изображений. Выделение краев на изображении. Обнаружение прямых. Обнаружение окружностей	 Опишите общую постановку задачи сегментации. Приведите основные алгоритмы автоматической сегментации изображений? Опшите принцип работы одногои из алгоритмов сегментации: алгоритм сегментации по водоразделам, MeanShif, FloodFill, GrabCut, Lazy Snapping, Random Walker, GrowCut. 	
6	Алгоритмы обнаружения особых точек на изображении	 Приведите описание одного из алгоритмов обнаружения особых точек на изображении. Для решения каких задач применяется поиск особых точек? 	

7	Геометрические преобра- зования	 Какие геометрические преобразования используются в СТЗ? Запишите основные матрицы аффинных преобразований Отличие аффинных преобразований от перспективных?
		 Приведите описание модели фотографической камеры. Запишите алгоритм калибровки камеры с помощью библиотеки OpenCV на Python.
		6. Каковы основные идеи алгоритмов реконструкции геометрии по одному изображению.
8	Методы обнаружения объектов на изображении. Детектор пешеходов	 Назовите основные методы обнаружения объектов на изображении. Какие Признаки, используются для описания объектов. Детектор Viola-Jones. Детектор Dalal-Triggs.
9	Анализ серии последовательных изображений. Обработка видеопоследовательностей. Вычисление оптического потока. Трассировка методом Mean-Shift. Трекинг объектов	 Для решения каких задач производится анализ серии последовательных изображений? Назовите основные алгоритмы построения модели фона. Для чего строятся модели фона? Трассировка методом Mean-Shift
10	Нейросетевые методы обработки изображений для решения задач технического зрения	 Изобразите модель формального нейрона. Опишите основные шаги метод обратного распространения ошибки. Какие основные архитектуры нейронных сетей вы знаете? Опишите основной принцип работы одной из архитектур нейронных сетей (свёрточные нейронные сети, рекуррентные нейронные сети, нейронные сети Кохонена, сеть радиально-базисных функций.) Запишите на языке Python основные методы библиотеки TensorFlow для построения нейронной сети. Какие параметры они принимают?
11	Практическое применение систем технического зрения.	 Для чего применяются системы технического зрения в робототехнике Основные методы и идеи использования СТЗ для навигации роботов Назовите современные промышленные системы технического зрения, их структуру, разновидности. Опишите подходы к применению СТЗ в составе робототехнических комплексов.

5.4. Описание критериев оценивания компетенций и шкалы оценивания

При промежуточной аттестации в форме экзамена, дифференцированного зачета, дифференцированного зачета при защите курсового проекта/работы используется следующая шкала оценивания: 2 — неудовлетворительно, 3 — удовлетворительно, 4 — хорошо, 5 — отлично.

Критериями оценивания достижений показателей являются:

Наименование			
показателя	Критерий оценивания		
оценивания			
результата			
обучения по			
дисциплине			
Знания	Знание терминов, классификаций, современных методов обработки изоб-		
	ражений, основных принципов в области систем технического зрения		
	Объем освоенного материала		
	Полнота ответов на вопросы		
	Четкость изложения и интерпретации знаний		
Умения	Умение производить выбор методов обработки изображений и распознава-		
	ния образов и применять их для решения задач робототехники		
	Умение разрабатывать системы технического зрения робототехнических		
	комплексов, включая их аппаратную часть и программное обеспечение,		
	выполнять их настройку		
	Умение реализовывать разрабатываемые алгоритмы компьютерного зрения		
	с использованием языков программирования		
	Умение использовать методы обработки изображений при разработке		
	модулей и подсистем мехатронных комплексов, включая исполнительные,		
информационно-сенсорные и управляющие модули			
Навыки	Владеть навыками проектирования и реализации законченной программно-		
	аппаратной СТЗ с использованием готовых модулей и компонент;		
	Владеть навыками разработки мехатронных модулей и робототехнических		
	комплексов с применением алгоритмов обработки изображений;		

Оценка преподавателем выставляется интегрально с учётом всех показателей и критериев оценивания.

Оценка сформированности компетенций по показателю Знания.

Vayraayii	Уровень освоения и оценка				
Критерий	2	3	4	5	
Знание терми-	Не знает терми-	Знает термины,	Знает термины,	Знает термины,	
нов, классифи-	нов, классифика-	классификации,	классификации,	классификации,	
каций,	ций, современных	современные	современные	современные	
современных	методов обработ-	методов обработ-	методов обработ-	методов обработ-	
методов	ки изображений,	ки изображений,	ки изображений,	ки изображений,	
обработки	основных прин-	основные прин-	основные прин-	основные прин-	
изображений,	ципов в области	ципы в области	ципы в области	ципы в области	
основных	систем техниче-	систем техниче-	систем техниче-	систем техниче-	
принципов в	ского зрения	ского зрения, но	ского зрения	ского зрения,	
области систем		допускает неточ-		может корректно	
технического		ности формули-		сформулировать	
зрения		ровок		их самостоятель-	
				НО	
Объем освоен-	Не знает значи-	Знает только	Знает материал	Обладает твер-	
ного материала	тельной части	основной матери-	дисциплины в	дым и полным	
	материала дисци-	ал дисциплины,	достаточном	знанием материа-	
	плины	не усвоил его	объеме	ла дисциплины,	
		деталей		владеет дополни-	
				тельными знани-	
				ЯМИ	
Полнота	Не дает ответы на	Дает неполные	Дает ответы на	Дает полные,	

ответов на	большинство	ответы на все	вопросы, но не	развернутые
вопросы	вопросов	вопросы	все – полные	ответы на постав-
				ленные вопросы
Четкость	Излагает знания	Излагает знания с	Излагает знания	Излагает знания в
изложения и	без логической	нарушениями в	без нарушений в	логической
интерпретации	последовательно-	логической	логической	последовательно-
знаний	сти	последовательно-	последовательно-	сти, самостоя-
		сти	сти	тельно их интер-
				претируя и
				анализируя
	Не иллюстрирует	Выполняет	Выполняет	Выполняет
	изложение пояс-	поясняющие	поясняющие	поясняющие
	няющими схема-	схемы и рисунки	рисунки и схемы	рисунки и схемы
	ми, рисунками и	небрежно и с	корректно и	точно и аккурат-
	примерами	ошибками	понятно	но, раскрывая
				полноту усвоен-
				ных знаний
	Неверно излагает	Допускает неточ-	Грамотно и по	Грамотно и точно
	и интерпретирует	ности в изложе-	существу излага-	излагает знания,
	знания	нии и интерпре-	ет знания	делает самостоя-
		тации знаний		тельные выводы

Оценка сформированности компетенций по показателю Умения.

IC	Уровень освоения и оценка			
Критерий	2	3	4	5
Умение произ-	Не умеет	Умеет	Умеет	Умеет
водить выбор	производить	производить	производить	производить
методов	выбор методов	выбор методов	выбор методов	выбор методов
обработки	обработки	обработки	обработки	обработки
изображений и	изображений и	изображений и	изображений и	изображений и
распознавания	распознавания	распознавания	распознавания	распознавания
образов и	образов и	образов	образов и	образов и
применять их	применять их для		применять их	применять их для
для решения	решения задач		большинство для	решения задач
задач робото-	робототехники		решения задач	робототехники
техники			робототехники	
Умение	Не умеет	Умеет	Умеет	Умеет
разрабатывать	разрабатывать	разрабатывать	разрабатывать	разрабатывать
системы	системы	отдельные подси-	системы	системы
технического	технического	стемы системы	технического	технического
зрения	зрения	технического	зрения	зрения
робототехниче	робототехническ	зрения	робототехническ	робототехническ
ских	их комплексов,	робототехническ	их комплексов,	их комплексов,
комплексов,	включая их	их комплексов	включая их	включая их
включая их	аппаратную часть		аппаратную часть	аппаратную часть
аппаратную	и программное		и программное	и программное
часть и	обеспечение,		обеспечение	обеспечение,
программное	выполнять их			выполнять их
обеспечение,	настройку			настройку
выполнять их				
настройку				
Умение	Не умеет	Умеет	Умеет	Умеет
реализовывать	реализовывать	реализовывать	реализовывать	реализовывать

	T	1	1	,
разрабатываем	разрабатываемые	отдельные	большинство	разрабатываемые
ые алгоритмы	алгоритмы	алгоритмы	алгоритмов	алгоритмы
компьютерног	компьютерного	компьютерного	компьютерного	компьютерного
о зрения с	зрения с	зрения с	зрения с	зрения с
использование	использованием	использованием	использованием	использованием
м языков	языков	языков	языков	языков
программирова	программировани	программировани	программировани	программировани
R ИН	Я	Я	Я	Я
Умение	Не умеет	Умеет	Умеет	Умеет
использовать	использовать	использовать	использовать	использовать все
методы	методы	методы	большинство	современные
обработки	обработки	обработки	методов	методы
изображений	изображений при	изображений при	обработки	обработки
при разработке	разработке	разработке	изображений при	изображений при
модулей и	модулей и	простейших	разработке	разработке
подсистем	подсистем	модулей и	модулей и	модулей и
мехатронных	мехатронных	подсистем	подсистем	подсистем
комплексов,	комплексов,	мехатронных	мехатронных	мехатронных
включая	включая	комплексов	комплексов	комплексов,
исполнительн	исполнительные,			включая
ые,	информационно-			исполнительные,
информационн	сенсорные и			информационно-
о-сенсорные и	управляющие			сенсорные и
управляющие	модули			управляющие
модули				модули

Оценка сформированности компетенций по показателю Навыки.

V-yymanyyy	Уровень освоения и оценка				
Критерий	2	3	4	5	
Владеть навы-	Не владеет навы-	Имеет слабые	Владеет базовы-	Владеет охваты-	
ками проекти-	ками проектиро-	навыки проекти-	ми навыками	ваемыми учебной	
рования и	вания и реализа-	рования и реали-	проектирования и	программой	
реализации	ции законченной	зации закончен-	реализации	навыками проек-	
законченной	программно-	ной программно-	законченной	тирования и	
программно-	аппаратной СТЗ с	аппаратной СТЗ с	программно-	реализации	
аппаратной	использованием	использованием	аппаратной СТЗ с	законченной	
СТЗ с исполь-	готовых модулей	готовых модулей	использованием	программно-	
зованием	и компонент;	и компонент;	готовых модулей	аппаратной СТЗ с	
готовых моду-			и компонент;	использованием	
лей и компо-				готовых модулей	
нент				и компонент;	
Владеть	В принципе не	Имеет поверх-	Владеет базовым	Владеет навыка-	
навыками	понимает как	ностное пред-	навыками	ми разработки	
разработки	разрабатывать	ставление о том	разработки	мехатронных	
мехатронных	мехатронные	как разрабаты-	мехатронных	модулей и	
модулей и	модули и	вать мехатронные	модулей и	робототехническ	
робототехниче	робототехническ	модули и	робототехническ	их комплексов с	
ских	ие комплексы с	робототехническ	их комплексов с	применением	
комплексов с	применением	ие комплексы с	применением	алгоритмов	
применением	алгоритмов	применением	алгоритмов	обработки изоб-	
алгоритмов	обработки изоб-	алгоритмов	обработки изоб-	ражений	
обработки	ражений	обработки изоб-	ражений		
изображений		ражений			

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

6.1. Материально-техническое обеспечение

Ma	Наименование специальных помещений	Оснащенность специальных помещений
No	и помещений для самостоятельной работы	и помещений для самостоятельной работы
1	Лаборатория теории автоматического	Специализированная мебель; мультиме-
	управления и моделирования средств	дийный проектор, экран, ноутбук; проек-
	управления УК 4, № 231	тор с переносным экраном; 6 персональ-
		ных компьютеров с доступом в сеть
		Интернет; стенд для исследования мо-
		бильных роботов, шкаф автоматизации
		лабораторной установки для изучения
		САР уровня, камеры технического зрения,
2	Читальный зал библиотеки для самостоя-	Специализированная мебель; компьютер-
	тельной работы	ная техника, подключенная к сети «Ин-
		тернет», имеющая доступ в электронную
		информационно-образовательную среду
3	Методический кабинет	Специализированная мебель; мультиме-
		дийный проектор, переносной экран,
		ноутбук

6.2. Лицензионное и свободно распространяемое программное обеспечение

№	Перечень лицензионного программного обеспечения	Реквизиты подтверждающего документа
1	Microsoft Windows 10 Корпо-	Соглашение Microsoft Open Value Subscription
	ративная	V6328633. Соглашение действительно с 02.10.2017
		по 31.10.2023). Договор поставки ПО
		0326100004117000038-0003147-01 от 06.10.2017
2	Microsoft Office Professional	Соглашение Microsoft Open Value Subscription
	Plus 2016	V6328633. Соглашение действительно с 02.10.2017
		по 31.10.2023
3	Kaspersky Endpoint Security	Сублицензионный договор № 102 от 24.05.2018.
	«Стандартный Russian Edition»	Срок действия лицензии до 19.08.2020
		Гражданско-правовой Договор (Контракт) № 27782
		«Поставка продления права пользования (лицензии)
		Kaspersky Endpoint Security от 03.06.2020. Срок
		действия лицензии 19.08.2022г.
4	MathWorks	Лицензия №1145851 бессрочная
5	MSC Easy5, Patran, Nastran,	Соглашение RE008959BST-1 от 26.11.2018 бессроч-
	Adams	ная
6	Интерпретатор языка python c	свободно распространяемое программное
	установленными библиотеками	обеспечение
	matplotlib, mglearn, Jupyter	
	Notebook, pandas, SciPy,	
	NumPy, scikit-learn, TensorFlow	
7	Google Collab	свободно распространяемое программное обеспече-
		ние

6.3. Перечень учебных изданий и учебно-методических материалов

- 1. Борисова, И.В. Цифровые методы обработки информации [Электронный ресурс]: учебное пособие / И.В Борисова. Новосиб.: НГТУ, 2014. 139 с.: ISBN 978-5-7782-2448-3 // ZNANIUM.COM: электронно-библиотечная система Режим доступа: http://znanium.com/catalog/product/546207, ограниченный. Заглавие с экрана.
- 2. Селянкин, В.В. Решение задач компьютерного зрения [Электронный ресурс]: учебное пособие / В.В. Селянкин. Таганрог: Южный федеральный университет, 2016. 92 с.: ISBN 978-5-9275-2090-9 // ZNANIUM.COM: электронно-библиотечная система Режим доступа: http://znanium.com/catalog/product/991922, ограниченный. Заглавие с экрана.
- 3. Гонсалес, Р Цифровая обработка изображений [Электронный ресурс] / Гонсалес Рафаэл, Вудс Ричард; пер. Л. И. Рубанов, П. А. Чочиа; под ред. П.А. Чочиа М.: Техносфера, 2012.— 1104 с. // IPRbooks: электроннобиблиотечная система. Режим доступа: http://www.iprbookshop.ru/26905.html, ограниченный. Загл. с экрана.
- 4. Компьютерное зрение: Учебное пособие для вузов: Пер. с англ. / Л. Шапиро, Дж. Стокман; пер.: А. А. Богуславский; ред. пер.: С. М. Соколов. М.: БИНОМ. Лаборатория знаний, 2006. 752 с. (30 экз. в библиотеке ТУСУРа)
- 5. Гадзиковский В. И. Цифровая обработка сигналов / Гадзиковский В.И. Москва: СОЛОН-Пресс, 2013. [Электронный ресурс Лань: http://e.lanbook.com/books/element.php?pl1_id=64979]
- 6. Гетманов В. Г. Цифровая обработка сигналов: учебное пособие для вузов / Гетманов В.Г. Москва: НИЯУ МИФИ (Национальный исследовательский ядерный университет «Московский инженерно-физический институт»), 2010. [Электронный ресурс Лань: http://e.lanbook.com/books/element.php?pl1_id=75740]
- 7. Основы робототехники: Учебное пособие / А.А. Иванов. М.: Форум, 2014. 224 с. (Высшее образование). ISBN 978-5-91134-575-4- Режим доступа: http://znanium.com/catalog.php?bookinfo=469746
- 8. Каляев, И.А. Интеллектуальные роботы: учебное пособие для вузов. [Электронный ресурс] / И.А. Каляев, В.М.
- 9. Лохин, И.М. Макаров, С.В. Манько. Электрон. дан. М.: Машиностроение, 2007. ? 360 с. Режим доступа: http://e.lanbook.com/book/769
- 10. Шарапов В.М., Датчики [Электронный ресурс]: Справочное пособие / Под общ. ред. В.М. Шарапова, Е.С.
- 11.Полищука. М.: Техносфера, 2012. 624 с. ISBN 978-5-94836-316-5 Режим доступа: http://www.studentlibrary.ru/book/ISBN9785948363165.html

Перечень дополнительной литературы:

- 1. Бовырин, А. Введение в разработку мультимедийных приложений с использованием библиотек OpenCV и IPP [Электронный ресурс] / А. Бовырин. Электрон. текстовые данные. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), Режим доступа: https://www.intuit.ru/studies/courses/10621/1105/info.
- 2. Гренандер, У. Лекции по теории образов в 3 т / У. Гренандер Пер. с англ. И.Гуревича; под ред. Ю.Журавлева // М: Мир, 1981. 446 с.
- 3. Шахтарин Б.И., Обнаружение сигналов [Электронный ресурс]: Учебное пособие для вузов. 3-е изд., испр. / Б.И. Шахтарин М.: Горячая линия Телеком, 2015. 464 с. ISBN 978-5-9912-0395-1 Режим доступа: http://www.studentlibrary.ru/book/ISBN9785991203951.html
- 4. Алгоритмы и процессоры цифровой обработки сигналов: Пособие / Солонина А.И., Улахович Д.А., Яковлев Л.А. СПб: БХВ-Петербург, 2015. 461 с. ISBN 978-5-9775-1449-1- Режим доступа: http://znanium.com/catalog/product/939957
- 5. Подураев, Ю.В. Мехатроника: основы, методы, применение: учеб. пособие для студентов вузов. [Электронный ресурс] / Электрон. дан. М.: Машиностроение, 2007. 256 с. Режим доступа: http://e.lanbook.com/book/806

6.4. Перечень интернет ресурсов

- 1. http://www.elibrary.ru- Научная электронная библиотека
- 2. http://www.gpntb.ru/- Государственная публичная научно-техническая библиотека Росии
 - 3. http://elibrary.bmstu./ru Библиотека МГТУ им. Н.Баумана
- 4. http://www.viniti.ru Всероссийский институт научной информации по техническим наукам(ВИНИТИ)
- 5. http://www.unilib.neva.ru/rus/- Фундаментальная библиотека Санкт-Петербургского государственного политехнического университета
- 6. http://elibrary.eltech.ru Библиотека Санкт-Петербургского государственного электротехнического университета
- 7. http://www.ntb.bstu.ru и переход к системе NormaCS Электронно-библиотечная система БГТУ им В.Г.Шухова
- 8. http://scholar.google.com/ научный Google, со всеми его гигантскими достоинствами и определенными маркетинговыми особенностями.
 - 9. Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс]. Режим доступа: http://window.edu.ru/
 - 10.Информационная системы доступа к электронным каталогам библиотек сферы образования и науки (ИС ЭКБСОН)[Электронный ресурс]. Режим доступа: http://www.vlibrary.ru/
 - 11.Информатика и системы управления http://ics.khstu.ru/
 - 12.Портал «Техническое зрение»: www.technicalvision.ru

- 13.Электронная библиотека международного общества по оптической технике: www.spiedl.org
- 14.Портал сообщества пользователей Matlab: https://www.mathworks.com/matlabcentral/

УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Рабочая программа утверждена на 20/ 20 учебный год без изменений.			
Протокол № засе,	дания кафедры от «		20 г.
Заведующий кафедрой	подпись	В. Г. Ру ФИ	
Директор института	подпись	Выберите элемент Фио	