МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г. Шухова)

УТВЕРЖДАЮ

Директор института экономики и

менеджмента

...... Ю.А. Дорошенко

0

2018 т

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

Математика

Специальность

18.05.02 - Химическая технология материалов современной энергетики

специализация:

Ядерная и радиационная безопасность на объектах использования ядерной энергии

Квалификация (степень) инженер

> Форма обучения **Очная**

Институт: экономики и менеджмента

Кафедра высшей математики

Рабочая программа составлена на основании требований:

•Федерального государственного образовательного стандарта высшего образования по направлению подготовки 18.05.02 — Химическая технология материалов современной энергетики (уровень специалитета), утвержденного приказом Министерства образования и науки РФ от 17.10.2016г, № 1291

17.10.2016г, № 1291
 плана учебного процесса БГТУ им. В.Г. Шухова, введенного в действие в 2018 году.
Составитель: ст. преподаватель. Диер (Дюкарева В.И.)
Рабочая программа согласована с выпускающей кафедрой: теоретической и прикладной химии
Заведующий кафедрой д.т.н., проф(В.И. Павленко)
« <u>14</u> » <u>05</u> <u>2018</u> г.
Рабочая программа обсуждена на заседании кафедры «
Заведующий кафедрой: к.т.н., доцент
Рабочая программа одобрена методической комиссией института экономики и менеджмента «
Председатель к.э.н., профессор Вы (В.В. Выборнова)

1.ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

	Формируемые	компетенции	Требования к результатам обучения			
No	Код компетенции	Компетенция	1 1 7 7			
		Общекульт	Урные			
1	OK-10	Стремление к	В результате освоения дисциплины			
		саморазвитию,	обучающийся должен			
		повышению своей	Знать: основные понятия и методы			
		квалификации и	линейной алгебры и аналитической			
		мастерства, способен	геометрии; основы математического анализа;			
		самостоятельно	элементы теории вероятностей.			
		применять методы и	Уметь: решать типовые задачи;			
		средства познания,	использовать математический аппарат для			
		обучения и	решения теоретических и прикладных			
		самоконтроля для	задач; содержательно интерпретировать			
		приобретения новых	получаемые количественные результаты			
		знаний и умений в	Владеть: основными математическими			
		области техники и	понятиями дисциплины; иметь навыки			
		технологии,	работы со специальной математической			
		математики,	литературой; навыками применения			
		естественных,	современного математического			
		гуманитарных,	инструментария для решения задач			
		социальных и	ттетрутентирны дем решения зиди г			
		экономических наук, в				
		том числе в новых				
		областях,				
		непосредственно не				
		связанных со сферой				
		деятельности,				
		развития социальных и				
		профессиональных				
		компетенций				
		Обще-професси	иональные			
1	ОПК-1	способность	В результате освоения дисциплины			
		использовать	обучающийся должен			
		математические,	Знать: методы дифференциального и			
		естественнонаучные и	интегрального исчисления; ряды и их			
		инженерные знания	сходимость, разложение элементарных			
		для решения задач	функций; методы решения			
		своей	дифференциальных уравнений первого и			
		профессиональной	второго порядка; методы линейной алгебры			
		деятельности	и аналитической геометрии; виды и			
		A01101121100111	свойства матриц, системы линейных			
			алгебраических уравнений, векторы и			
			линейные операции над ними; элементы			
			теории вероятностей.			
			Уметь: исследовать функции, строить их			
			графики; исследовать ряды на сходимость;			
			решать дифференциальные уравнения;			
			использовать аппарат линейной алгебры и			
			аналитической геометрии; самостоятельно			
			использовать математический аппарат,			
			содержащийся в специализированной			
			литературе, расширять свои			
	<u> </u>	1	milipai)			

математические познания.
Владеть: аппаратом дифференциального и
интегрального исчисления, навыками
решения дифференциальных уравнений
первого и второго порядка; навыками
решения задач линейной алгебры,
аналитической геометрии, теории
вероятностей и математической статистики;
первичными навыками и основными
методами решения математических задач
из общеинженерных и специальных
дисциплин профилизации.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

$N_{\underline{0}}$	Наименование дисциплины (модуля)
1	

Содержание дисциплины служит основой для изучения следующих дисциплин:

№	Наименование дисциплины (модуля)
1	Психология и педагогика
2	Основы саморазвития личности
3	Основы самопознания и саморазвития
4	Государственная итоговая аттестация
5	Физика
6	Общая и неорганическая химия
7	Органическая химия
8	Аналитическая химия
9	Физическая и коллоидная химия
10	Механика
11	Инженерная графика
12	Введение в специальность
13	Материаловедение
14	Электротехника и промышленная электроника
15	Поверхностные явления и дисперсные системы
16	Основы ядерной физики
17	Физика твердого тела
18	Учебная практика
19	Производственная практика

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 15 зач. единиц, 540 часов.

Вид учебной работы	Всего	Семестр	Семестр	Семестр
	часов	№ 1	№ 2	№ 3
Общая трудоемкость дисциплины, час	540	178	194	160
Контактная работа (аудиторные занятия), в	255	85	102	68
т.ч.:				
лекции	102	34	34	34
лабораторные				
практические	153	51	68	34
Самостоятельная работа студентов, в том	285	93	92	100
числе:				
Курсовой проект				
Курсовая работа				
Расчетно-графическое задания				
Индивидуальное домашнее задание	27	9	9	9
Другие виды самостоятельной работы	222	84	83	55
Форма промежуточная аттестация (зачет, экзамен)	36	зачет	зачет	36

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 4.1 Наименование тем, их содержание и объем Курс 1 Семестр 1

		раздел по вид		ематический идам учебной вки, час		
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные з	Самостоятельная	раюота
1. J	Пинейная алгебра					
	Определители. Решение систем линейных уравнений. Матрицы.	8	12		24	
2. A	Аналитическая геометрия				1	
	Векторная алгебра. Прямая на плоскости. Плоскость и прямая в пространстве. Кривые на плоскости	8	28		24	
3. I	Переделы и дифференцирование функций одной переменн	юй		•		
	Предел последовательности. Предел функции, непрерывность. Производная функции. Исследование	18	28		36	
	функций с помощью производной, построение графиков. Геометрические и физические задачи,					
	решаемые с применением производной					
	ВСЕГО	34	68		84	

Курс 1 Семестр 2

№ Наименование раздела п/п (краткое содержание)	Объем на тематический раздел по видам учебной нагрузки, час
---	---

	Лекции	Практические занятия	Лабораторные з анятия	Самостоятельная работа
4. Неопределенный интеграл Табличное интегрирование, подведение под знан дифференциала. Интегрирование по частям интегрирование подстановкой. Интегрирование функций, содержащий квадратный трехчлен Интегрирование рациональных дробей тригонометрических функций.	14	28		26
5. Определённые интеграл Вычисление определенных интегралов. Приложения определённого интеграла к решению геометрических и физических задач.	8	16		27
6. Обыкновенные дифференциальные уравнения			ı	I
Уравнения с разделяющимися переменными. Однородные уравнения первого порядка. Простейшие уравнения высших порядков. Системы обыкновенных дифференциальных уравнений.	12	24		30
ВСЕГО	34	68		83

Курс 2 Семестр 3

		Объем на тематически раздел по видам учебно нагрузки, час			ебной
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные з анятия	Самостоятельная работа
7. (Бункции нескольких переменных				
	Функции двух аргументов. Частные производные. Полный дифференциал. Производные и дифференциалы высших порядков. Экстремумы функций двух независимых аргументов. Условные экстремумы. Метод множителей Лагранжа. Наименьшее и наибольшее значения функции в замкнутой области. ДУ в полных дифференциалах	8	8		16
8. l	Кратные интегралы				
	Двукратные и двойные интегралы. Двойные интегралы в полярных координатах. Тройной интеграл в декартовых координатах. Тройной интеграл в цилиндрических и сферических координатах. Приложения кратных интегралов к решению геометрических и физических задач.	8	8		14
9. 1	Ряды				

Числовые ряды. Необходимый признак сходимости. Достаточные признаки для рядов с положительными членами. Знакопеременные и знакочередующиеся ряды. Абсолютная и условная сходимость. Функциональные ряды. Область сходимости. Степенные ряды. Радиус сходимости. Ряды Тейлора и Маклорена. Биномиальный ряд и следствия из него.	8	8	12
10. Теория вероятностей	•		
Сочетание, перестановки, размещение. Классическое определение вероятности. Геометрические вероятности. Теоремы сложения и умножения вероятностей. Формулы полной вероятности, формулы Байеса. Повторение испытаний. Формула Бернулли. Локальная и интегральная теоремы Лапласа. Формула Пуассона. Дискретные и непрерывные случайные величины, их числовые характеристики. Нормальный закон распределения. Равномерное и показательное распределение. Случайный вектор. Двумерные случайные величины. Корреляционный момент, коэффициент корреляции.	10	10	13
ВСЕГО	34	34	55

4.2. Содержание практических (семинарских) занятий

No	Наименование	Тема практического (семинарского)	К-во	К-во
п/п	раздела дисциплины	занятия	часов	часов СРС
		семестр № 1		
1	Линейная алгебра	Определители. Решение систем линейных уравнений. Матрицы.	12	24
2	Аналитическая геометрия	Векторная алгебра. Прямая на плоскости. Плоскость и прямая в пространстве. Кривые на плоскости	28	24
3	Переделы и дифференцирование функций одной переменной	Предел последовательности. Предел функции, непрерывность. Производная функции. Исследование функций с помощью производной, построение графиков. Геометрические и физические задачи, решаемые с применением производной	28	36
		ИТОГО:	68	84
		семестр № 2		
1	Неопределенный интеграл	Табличное интегрирование, подведение под знак дифференциала. Интегрирование по частям, интегрирование подстановкой. Интегрирование функций, содержащий квадратный трехчлен. Интегрирование рациональных дробей, тригонометрических функций.	28	30
2	Определенный интеграл	Вычисление определенных интегралов. Приложения определённого интеграла к решению геометрических и физических	16	27

		задач. Вычисление длин дуг и площадей		
		в полярных координатах		
3	Обыкновенные	Уравнения с разделяющимися	24	26
	дифференциальные	переменными. Задача Коши.		_0
	уравнения	Однородные уравнения первого порядка.		
	31	Простейшие уравнения высших		
		порядков. Уравнения второго порядка,		
		допускающие понижение порядка.		
		Линейные уравнения второго порядка с		
		постоянными коэффициентами.		
		Системы обыкновенных		
		дифференциальных уравнений.		
	<u> </u>	ИТОГО:	68	83
		семестр № 3	ll	
1	Функции нескольких	Функции двух аргументов. Частные	8	10
	переменных	производные. Полный дифференциал.		
	1	Производные и дифференциалы		
		высших порядков. Экстремумы		
		функций двух независимых аргументов.		
		Условные экстремумы. Метод		
		множителей Лагранжа. Наименьшее и		
		наибольшее значения функции в		
		замкнутой области. ДУ в полных		
		дифференциалах		
2	Кратные интегралы	Двукратные и двойные интегралы.	8	16
		Двойные интегралы в полярных		
		координатах. Тройной интеграл в		
		декартовых координатах. Тройной		
		интеграл в цилиндрических и		
		сферических координатах. Приложения		
		кратных интегралов к решению		
		геометрических и физических задач.		
3	Ряды	Числовые ряды. Необходимый признак	8	15
		сходимости. Достаточные признаки для		
		рядов с положительными членами.		
		Знакопеременные и		
		знакочередующиеся ряды. Абсолютная		
		и условная сходимость.		
		Функциональные ряды. Область		
		сходимости. Степенные ряды. Радиус		
		сходимости. Ряды Тейлора и		
		Маклорена. Биномиальный ряд и		
		следствия из него.		
4	Теория вероятностей	Сочетание, перестановки, размещение.	10	14
		Классическое определение вероятности.		
		Геометрические вероятности. Теоремы		
		сложения и умножения вероятностей.		
		Формулы полной вероятности,		
		формулы Байеса. Повторение		
		испытаний. Формула Бернулли.		
		Локальная и интегральная теоремы		
		Лапласа. Формула Пуассона.		
		Дискретные и непрерывные случайные		
		величины, их числовые характеристики.		

Нормальный закон распределения. Равномерное и показательное распределение. Случайный вектор. Двумерные случайные величины. Корреляционный момент, коэффициент корреляции.		
ИТОГО:	34	55
ВСЕГО:	170	222

4.3. Содержание лабораторных занятий

Учебным планом не предусмотрено.

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов (типовых заданий)

5.1. Перечень контрольных вопросов (типовых заданий)			
	Наименование	Содержание вопросов (типовых заданий)	
$N_{\underline{0}}$	раздела дисциплины		
Π/Π			
1	Линейная алгебра	Определители 2-го и 3-го порядка. Правила вычисления.	
	_	Свойства определителей	
		Определитель n-го порядка	
		Системы 2 линейных уравнений с 2-мя неизвестными	
		Системы 3 линейных уравнений с 3-мя неизвестными	
		Метод Гаусса решения систем линейных алгебраических уравнений	
		Матрицы, действия над ними. Обратная матрица, алгоритм ее	
		нахождения. Матричный метод решения систем линейных	
		алгебраических уравнений. Теорема Кронеккера - Капелли.	
2	Аналитическая геометрия	Простейшие задачи аналитической геометрии: расстояние между 2-	
	•	мя точками, деление отрезка в данном отношении, определение	
		площади треугольника по 3-м заданным точкам.	
		Декартова система координат. Параллельный перенос и поворот	
		Полярная система координат	
		Основные понятия о векторах	
		Линейные опереди над векторами и их свойства	
		Теоремы о коллинеарных и компланарных векторах	
		Понятие о базисе. Базис в плоскости и в пространстве	
		Проекция вектора на ось, их свойства	
		Координаты вектора в плоскости и в пространстве	
		Скалярное произведение векторов и его свойства	
		Векторное произведение векторов и его свойства	
		Смешанное произведение векторов и его свойства	
		Уравнения прямой на плоскости	
		Расстояние от точки до прямой (на плоскости)	
		Взаимное расположение 2-х прямых	
		Окружность и эллипс. Гипербола. Парабола	
		Общие свойства гиперболы, параболы и эллипса	
		Уравнения плоскости, Уравнения прямой в пространстве. Графики	
		элементарных функций	

3	Переделы и дифференцирование	Числовые последовательности. Предел последовательности		
	функций одной переменной	Бесконечно малые и бесконечно большие последовательности		
	17	Теоремы о пределах последовательности		
		Число е		
		Предел функции		
		Односторонние пределы функции. Теорема о существовании предела функции		
		Непрерывность функции. Свойства пределов от непрерывных		
		функций		
		Свойства бесконечно малых и бесконечно больших функций		
		Первый замечательный предел		
		Второй и третий замечательные пределы		
		Теоремы о непрерывных функциях Точки разрыва функции		
		Производная, ее геометрический и механический смысл		
		Понятие дифференцируемости функций		
		Основные правила дифференцирования		
		Производные от элементарных функций		
		Производная сложной функции. Логарифмическая производная Производная от функций заданной неявно и в параметрическом		
		виде		
		Производные высших порядков		
		Дифференциал, его геометрический смысл		
		Дифференциалы высших порядков. Свойства дифференциалов Теоремы о среднем		
		Определение экстремумов функции		
		Точки перегиба. Выпуклость, вогнутость функции		
		Общий алгоритм исследования графика функции с помощью		
		производных. Нахождение наибольшего и наименьшего значений		
		функции на заданном интервале.		
4	Неопределенный интеграл	Первообразная, неопределенный интеграл и его свойства.		
		Таблица неопределенных интегралов		
		Подведение под знак дифференциала. Замена переменной в определенном интеграле. Тригонометрические подстановки.		
		Интегрирование по частям в неопределенном интеграле.		
		Примеры		
		Интегрирование простейших рациональных дробей		
		Мнимая единица, её степени. Комплексные числа.		
		Действительная и мнимая части комплексного числа.		
		Действительная и мнимая части комплексного числа. Действия с		
		комплексными числами в алгебраической форме.		
		Тригонометрическая форма комплексного числа, его модуль и		
		аргумент. Действия с комплексными числами в		
		тригонометрической форме. Формула Муавра. Формула Эйлера		
		Основная теорема алгебры. Теорема Безу и следствие из нее.		
		Разложение многочлена на множители.		
		Теорема о многочлене, тождественно равном нулю. Теорема о		
		тождественно равных многочленах		
		Интегрирование дробно-рациональных функций.		
		Интегрирование иррациональностей		
5	Определенный интеграл	Интегрирование тригонометрических функций Определенный интеграл, геометрический смысл, свойства		
	определенный интеграл	Несобственные интегралы		
		Замена переменной в определенном интеграле. Интегрирование по		
		частям в определенном интеграле		
		Приложение определенных интегралов к решению геометрических		
		задач.		
		Определенный интеграл в решении физических задач		

6	Обыкновенные дифференциальные	Обыкновенные дифференциальные уравнения (ДУ) первого
	уравнения	порядка. Задача Коши. Уравнения с разделяющимися
	71	переменными.
		_
		Однородные уравнения первого порядка и приводящиеся к ним.
		Линейные ДУ первого порядка. Уравнение Бернулли.
		ДУ второго порядка, случай понижения порядка
		Однородные ДУ второго порядка. Свойства их решений.
		Определитель Вронского. Структура общего решения.
		Однородные ДУ второго порядка с постоянными коэффициентами
		Структура общего решения неоднородного ДУ второго порядка
		Неоднородные ДУ второго порядка с постоянными
		коэффициентами. Метод вариации произвольных постоянных
		Неоднородные ДУ второго порядка с постоянными
		коэффициентами и специальной правой частью
		Понятие о системах ДУ
7	Функции нескольких переменных	Функции нескольких аргументов. Графическое представление
	1	функции двух переменных. Предел, частные производные
		Полное приращение и полный дифференциал функции двух
		аргументов. ДУ в полных дифференциалах
		Необходимые условия экстремума функции двух аргументов.
		Стационарные точки.
		Достаточные условия экстремума функции двух аргументов.
		Наибольшее и наименьшее значение функции двух переменных в
		замкнутой области
- 0	TC.	Условные экстремумы. Метод Лагранжа.
8	Кратные интегралы	Двойной интеграл, определение, свойства, физический смысл
		Двукратные интегралы, вычисление двойного интеграла с
		помощью двукратного
		Двойной интеграл в полярных координатах
		Геометрические приложения двойного интеграла
		Тройной интеграл, его свойства
		Тройной интеграл в цилиндрических координатах
		Тройной интеграл в сферических координатах
		Приложения тройного интеграла
9	Ряды	Числовые ряды. Основные определения. Необходимый признак
		сходимости. Свойства.
		Достаточные признаки сходимости рядов с положительными
		членами
		Знакочередующиеся ряды. Признак Лейбница.
		Знакопеременные ряды. Абсолютная и условная сходимость
		Понятие функционального ряда. Область сходимости
		функционального ряда. Мажорируемые ряды. Почленное
		интегрирование и дифференцирование функциональных рядов
		Степенные ряды. Теорема Абеля
		Формула и ряд Тейлора. Ряд Маклорена.
		тормула прид голора. гид маклорона.

10	Теория вероятностей	Испытание, событие, предмет теории вероятностей, классическое	
		определение вероятности, его ограниченности. Геометрические и	
		статистические вероятности.	
		Сумма и произведение событий. Теоремы сложения и умножения	
		вероятностей и следствия из них	
		Повторение испытаний. Формула Бернулли и её приложения	
		Случайные величины. Закон распределения дискретной случайной	
		величины. Математическое ожидание и его свойства. Среднее	
		квадратическое отклонение	
		Математическое ожидание и дисперсия биномиального	
		распределения. Распределение Пуассона	
		Непрерывные случайные величины. Функция распределения.	
		Плотность вероятности. Вероятность попадания непрерывной	
		случайной величины в заданный интервал. Математическое	
		ожидание и дисперсия непрерывной случайной величины	
		Нормальный закон распределения	
		Равномерный и показательный законы распределения	
		Случайный вектор. Дискретные и непрерывные двумерные	
		случайные величины.	
		Корреляционный момент, коэффициент корреляции. Линейная	
		регрессия.	
		Виды выборок. Эмпирическая функция распределения. Полигон и	
		гистограмма. Выборочная средняя. Выборочная дисперсия.	
		Точечная и интервальная оценки параметров.	
		Метод моментов. Метод наибольшего правдоподобия.	
		Расчет сводных характеристик выборки.	
		Выборочные уравнения регрессии.	
		Критерии X^2 , Стьюдента, Пирсона, Фишера – Снедекора.	
		Проверка статистических гипотез.	
		Случайные функции. Корреляционная функция, ее свойства.	
		Взаимная корреляционная функция, ее свойства.	

5.2. Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем.

Учебным планом не предусмотрено.

5.3. Перечень индивидуальных домашних заданий, расчетно-графических заданий.

Учебным планом не предусмотрено.

5.4. Перечень контрольных работ.

- 1. Решение систем линейных алгебраических уравнений, матрицы и определители.
- 2. Векторы, действия над ними. Элементы аналитической геометрии.
- 3. Пределы функции.
- 4. Дифференциальное исчисление функций одной переменной.
- 5. Интегральное исчисление функции одной переменной.
- 6. Обыкновенные дифференциальные уравнения.
- 7. Числовые ряды и ряды Фурье.
- 8. Функции комплексного переменного.
- 9. Операционный метод решения линейных дифференциальных уравнений и их систем.
- 10. Случайные величины. Элементы математической статистики.

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

- 1. Письменный, Д.Т. Конспект лекции по высшей математике: полный курс / Д.Т. Письменный.—8-е изд.— М.: Айрис-пресс, 2009.—603с.
- 2. Кузнецов, Л.А. Сборник заданий по высшей математике. Типовые расчеты: учеб.пособие/ Л.А. Кузнецов–4-е изд.,стер.—СПб.: Лань, 2005.—238с.
- 3. Ефимов, А.В. Сборник задач по математике для втузов: в 4ч.: учеб. пособие /ред.: А.В. Ефимов, А.С. Поспелов. М.: Физматлит, 2004. 430с.
- 4. Федоренко, Б.З. Индивидуальные задания по математике: практикум: учеб.пособие/ Б.З.Федоренко, В.И. Петрашев.–Белгород: Изд-во БГТУ, 2008.–231с.
- 5. Лунгу К.Р., Макаров Е.В. Высшая математика. Часть 1. 2010г. Режим доступа: www.iprbookshop.ru/25002.html
- 6. Лунгу К.Р., Макаров Е.В. Высшая математика. Часть 2. Режим доступа: www.iprbookshop.ru/31997.html

6.2. Перечень дополнительной литературы

- 1. Бермант А. Ф. Краткий курс математического анализа для втузов. / А. Ф. Бермант. М.: Физматлит, 2003. 720 с.
- 2. Амосов А.А. Вычислительные методы для инженеров. / А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. М.: Высш. Школа,1994.-231 с.
- 3. Пискунов, Н. С. Дифференциальное и интегральное исчисления. Т. 1, 2- М.: Интеграл-Пресс, 2000, 2001. (любого другого года издания)

6.3. Перечень интернет ресурсов

- 1. Дорофеев, С.Н. Высшая математика [Электронный ресурс] / С.Н. Дорофеев.—Электрон. текстовые дан.—М.: Мир и Образование, 2011.—1 on-line.— (Полный конспект лекций). Режим доступа: https://elib.bstu.ru/Reader/Book/8178.
- 2. Феоктистов, Ю.А. Электронные лекции по математике для студентов 1-го курса заочной формы обучения всех направлений: Метод.указ. [Электронный ресурс] /Ю.А. Феоктистов.—Белгород: Изд-во БГТУ, 2015. Режим доступа: https://elib.bstu.ru/Reader/Book/2015120716584942000000652849.
- 3. Дюкарева, В.И. Кратные и криволинейные интегралы: методические указания к выполнению расчетно-графического задания для студентов направлений бакалавриата всех специальностей [Электронный ресурс] / В.И. Дюкарева, Э.И. Малышева, Е.В, Селиванова.—Белгород: Изд-во БГТУ, 2015. Режим доступа: https://elib.bstu.ru/Reader/Book/2015060316112952000000655409.
- 4. Балдин, К.В. Краткий курс высшей математики / К.В. Балдин, Ф.К. Балдин, В.И. Джеффаль.— М.: Дашков и К, 2013. Режим доступа: http://www.iprbookshop.ru/14611.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Учебные аудитории для лекционных и практических занятий, оборудованные компьютерной и проекционной техникой.

8. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

утверждение рабочей	й программы без измене	ний
Рабочая программа без и	зменений утверждена на	а 2019/2020 учебный год
Протокол № 13 заседан		
Заведующий кафедрой	подпись, ФИО	А.С. Горлов
Директор института _	подпись, ФИО	Ю.А. Дорошенко

ПРИЛОЖЕНИЯ

Приложение №1. Методические указания для обучающегося по освоению дисциплины

- 1. Методические указания по выполнению индивидуальных заданий при подготовке к промежуточным итоговым аттестациям для студентов 1 курса заочной формы обучения / Окунева Г.Л., Лавриненко Т.Н., Рябцева С.В.
- 2. Методические указания к выполнению индивидуальных заданий при подготовке к промежуточным итоговым аттестациям для студентов 2 курса заочной формы обучения / Окунева Г.Л., Лавриненко Т.Н., Рябцева С.В.
- 3. Дифференциальные уравнения: учебное пособие // Горлов А.С.
- 4. Теория вероятностей. Методические указания к выполнению контрольных заданий с примерами решения задач для студентов всех специальностей / Сост. Дюкарева В.И., Рябцева С.В. Белгород, 2009.
- 5. Теория функций комплексного переменного. Методические указания к выполнению контрольных работ для студентов 2-го курса заочной формы обучения всех специальностей / Сост. Дюкарева В.И., Рябцева С.В., Зубков Д.Э. Белгород, 2010.
- 6. Математика. Сборник тестов для студентов всех специальностей / Сост. Окунева Г.Л., Борзенков А. В., Лавриненко Т.Н., Белгород, 2009.
- 7. Высшая математика. Элементы линейной алгебры. Учебно-практическое пособие / Сергиенко Е.Н., Белгород, 1998.
- 8. Высшая математика. Линии на плоскости. Учебно-практическое пособие / Сергиенко Е.Н., Белгород, 1998.
- 9. Высшая математика. Векторы. Учебно-практическое пособие / Сергиенко Е.Н., Белгород, 1998.
- 10. Высшая математика. Введение в математический анализ. Учебнопрактическое пособие / Сергиенко Е.Н., Белгород, 1998.
- 11. Высшая математика. Вычисление интегралов. Учебно-практическое пособие / Сергиенко Е.Н., Белгород, 1999.

Дополнительную информацию по списку основной и дополнительной литературы можно найти на сайте кафедры http://pm.bstu.ru/studentu

8. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Утверждение рабочей	программы без изменен	ий	
Рабочая программа без и	зменений утверждена на	a 2020 /2021	учебный год
Протокол №13/1	заседания кафедры от «_	24 » 04	2020 г.
Заведующий кафед	рой	Го	олов А.С.
Директор института	подпись, ФИО	Дорошен	ко Ю.А