МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

УТВЕРЖДАЮ Директор института

Д.т.н., проф.

В.А.Уваров

« 8 3 centa fine 2016 r.

РАБОЧАЯ ПРОГРАММА

Дисциплины:

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

Направление подготовки:

15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

Профили подготовки: «Технология машиностроения»

Квалификация:

Бакалавр

Форма обучения:

Заочная

Архитектурно-строительный институт

Кафедра: Теоретической механики и сопротивления материалов

Рабочая программа составлена на основании требований:

- Федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств» (уровень бакалавриата), № 1000 от 11 августа 2016 г.
- плана учебного процесса БГТУ им. В.Г. Шухова, введенного в действие в 2016 году.

	Составитель: д.т.н., проф. В.Н. Стрельников
	Рабочая программа согласована с выпускающей кафедрой технологии машиностроения
	Заведующая кафедрой: д.т.н., проф
мехаі	Рабочая программа обсуждена на заседании кафедры теоретической ники и сопротивления материалов
9	« <u>1</u> » <u>Сентабра</u> 2016 г. Заведующий кафедрой: к.т.н., доцент <u> </u>
	Рабочая программа одобрена методической комиссией архитектурно- ительного института :
	« 1 » семтабра 2016 г. Председатель: к.т.н., доцент

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Формируемые компетенции			Требования к результатам обучения
$N_{\underline{0}}$	Код компетенции	Компетенция	Треоования к результатам обучения
		Общепрофессион	нальные
1 ОПК-1 Способность использовать основные закономерности, действующие в процессе изготовления машиностроительных изделий требуемого качества, заданного количества при наименьших затратах общественного труда.		вать основные закономерности, действующие в процессе изготовления машиностроительных изделий требуемого качества, заданного количества при наименьших затратах общественного	В результате освоения дисциплины обучающийся должен: Знать: основные понятия и методы теоретической механики; законы классической механики; оптимальные методы решения задач механики, исходя из анализа различных вариантов решений Уметь: применять методы теоретической механики при решении типовых профессиональных задач; осуществлять анализ решений типовых задач; применять методы решения задач механики, анализировать варианты решений
	ОПК-4	Способность участво-	Владеть: методологией постановки и решения задач механики и типовых профессиональных задач; методами сравнительного анализа вариантов постановки и решений инженерных задач; специальным программным обеспечением для решения профессиональных задач. В результате освоения дисциплины
		вать в разработке обобщенных вариантов решения проблем, связанных с машиностроительными производствами, выборе оптимальных вариантов прогнозируемых последствий решения на основе их анализа;	обучающийся должен: Знать: методологию построения математических моделей механических систем, методику постановки и решения задач теоретической механики и инженерных задач. Уметь: формировать математические модели механических систем, использовать законы, теоремы и методы теоретической механики для решения инженерных профессиональных задач.
			Владеть: опытом построения и анализа математических моделей механических систем, возможностями реализации методов статики, кинематики и динамики при решении расчетно-конструкторских и технологических производственных задач, навыками инжиниринга.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

№	Наименование дисциплины (модуля)
1	Высшая математика
2	Физика
3	Начертательная геометрия и инженерная графика

Содержание дисциплины служит основой для изучения следующих дисциплин:

No	Наименование дисциплины (модуля)
1	Сопротивление материалов
2	Теория механизмов и машин
3	Детали машин и основы конструирования
4	Основы проектирования

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

Вид учебной работы	Всего часов	Семестр № 2	Семестр № 3
Общая трудоемкость дисциплины, час	180	90	90
Контактная работа (аудиторные занятия), в т.ч.:	18	8	10
лекции	8	4	4
лабораторные			
практические	8	4	6
Самостоятельная работа студентов, в том числе:	162	82	80
Курсовой проект			
Курсовая работа			
Расчетно-графическое задания			
Индивидуальное домашнее задание	9	9	
Другие виды самостоятельной работы	58	29	29
Форма промежуточная аттестация (зачет, экзамен)	36	Зачет	Экзамен 36

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 4.1 Наименование тем, их содержание и объем Курс 2 Семестр 3

		Объем на тематический раздел по видам учебной нагрузки, час			
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа
	1. Статика				
1.1	Основные понятия и				
	определения статики. Основные аксиомы статики.	_	_		2
	Задачи статики. Типы связей и их реакции				_
1.2	Система сходящихся сил. Сложение сходящихся сил.	0,5	0,5		8
	Проекция силы на ось и на				
	плоскость. Теорема о проекции				
	вектора суммы на ось Геометрические и				
	аналитические условия				
	равновесия сходящихся сил на				
	плоскости и в пространстве.				
	Теорема о трех				
	непараллельных силах. Системы статически				
	определимые и				
	неопределимые.				
1.3	Момент силы относительно	0,5	0,5		14
	центра. Свойства момента силы. Центр параллельных сил.				
	Сложение параллельных сил.				
	Сосредоточенные силы и				
	распределенные нагрузки. Пара				
	сил. Момент пары. Теоремы об				
	эквивалентности и о сложении				
1.4	Пар.	0,5	0,5		18
1.4	Пространственная система сил. Момент силы относительно	0,3	0,3		10
	оси. Теорема Вариньона о				
	моменте равнодействующей.				
	Теорема о параллельном				
	переносе силы. Приведение				
	системы сил к одному центру.				
	Вычисление главного вектора и главного момента системы.				
	Частные случаи:				
	равнодействующая, пара сил,				
	динамический винт				
1.5	Аналитические условия	0,5	0,5		10
	равновесия произвольной	-)-	- ,-		-

	системы сил. Центр тяжести.			
	2. Кинематика			
2.1	Кинематика точки. Способы задания движения точки. Уравнения движения точки и пройденный путь. Определение траектории точки. Скорость точки. Ускорение точки. Оси естественного трехгранника. Касательное и нормальное ускорения.	0,5	0,5	9
2.2	Кинематика твердого тела. Поступательное движение. Вращательное движение тела. Уравнение движения. Угловая скорость и угловое ускорение тела. Скорость и ускорение точки тела. Передаточные механизмы.	0,5	0,5	9
2.3	Плоское движение тела. Уравнения движения. Разложение плоского движения на поступательное и вращательное. Теорема сложения скоростей точек плоской фигуры. Мгновенный центр скоростей (МЦС). Определение скоростей точек с помощью МЦС.	0,5	0,5	6
2.4	Сложное движение точки. Абсолютное, относительное и переносное движения точки. Относительные, переносные и абсолютные скорости и ускорения точки. Теорема Кориолиса.	0,5	0,5	6
	ВСЕГО	4	4	82

Курс 2 Семестр 4

		Объем на тематический раздел по видам учебной нагрузки, час			
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа
	3. Динамика				

3.1	Динамика точки.	0,5	1,5	10
	Дифференциальные уравнения	-	·	
	движения свободной и			
	несвободной материальной			
	точки в декартовых и			
	естественных координатах. Две			
	<u> </u>			
	основные задачи динамики.			
	Решение первой задачи.			
	Решение второй задачи			
	динамики.			
3.2	Понятие о колебательном	0,5	0,5	10
	движении: свободные			
	колебания точки, затухающие			
	колебания точки, вынужденные			
	колебания. Резонанс.			
3.3	Общие теоремы динамики	0,5	0,5	10
	точки. Количество движения			
	точки. Импульс силы.			
	Вычисление импульса силы.			
	Теорема об изменении			
	количества движения точки в			
	дифференциальной и конечной			
	формах.			
3.4	Кинетическая энергия точки.	0,5	0,5	10
Э.Т	Работа силы. Мощность.	0,5	0,5	10
	Примеры вычисления работы			
	силы: тяжести, упругости,			
	трения. Теорема об изменении			
	кинетической энергии в			
	дифференциальной и конечной			
2.5	формах.	0.5	0.5	10
3.5	Динамика механической	0,5	0,5	10
	системы. Механическая			
	система. Момент инерции тела			
	относительно оси. Радиус			
	инерции. Теорема Гюйгенса.			
3.6	Теорема о движении центра	0,5	0,5	8
	масс. Закон сохранения			
	движения центра масс.			
	Иллюстрация закона.			
3.7	Количество движения системы.	0,5	1	 11
	Теорема об изменении			
	количества движения системы.			
	Теорема об изменении			
	кинетического момента			
	системы. Закон сохранения			
	кинетического момента.			
3.8	Кинетическая энергия системы.	0,5	1	11
2.0	Кинетическая энергия при	,,,	_	
	поступательном, вращательном			
	и плоском движениях тела.			
	Работа силы, приложений к			
	, ±			
	вращающемуся телу. Теорема			
	об изменении кинетической			
	энергии системы.	4	(00
	ВСЕГО	4	6	80

4.2. Содержание практических (семинарских) занятий

№ п/п	Наименование раздела дисциплины	Тема практического (семинарского) занятия	К-во часов	К-во часов СРС
	Семестр Л. Стати			
1.	Система сходящихся сил. Сложение сходящихся сил. Проекция силы на ось и на плоскость	Проекция силы на ось. Условие равновесия сходящейся системы сил.	0,25	2
2.	Момент силы относительно центра. Свойства момента силы. Пара сил. Момент пары.	Определение момента силы относительно центра.	0,25	2
3.	Произвольная плоская система сил. Условие равновесия плоской системы сил.	Определение реакций опор твердого тела. Система двух тел	0,5	4
4.	Понятие о ферме. Методы расчета плоских ферм. Определение усилий в стержнях фермы методом вырезания узлов.	Расчет плоских ферм. Метод вырезания узлов. Метод сечений (Риттера).	0,25	2
5.	Пространственная система сил. Момент силы относительно оси. Теорема Вариньона о моменте равнодействующей. Теорема о параллельном переносе силы. Приведение системы сил к одному центру. Вычисление главного вектора и главного момента системы. Частные случаи: равнодействующая, пара сил, динамический винт.	Приведение произвольной системы сил к простейшему виду. Определение главного вектора и главного момента произвольной системы сил.	0,5	4
6.	Аналитические условия равновесия произвольной системы сил. Центр тяжести.	Произвольная пространственная система сил. Определение реакций опор твердого тела. Определение положения центра тяжести	0,5	4
	Кинематика			
7.	Кинематика точки. Способы задания движения точки. Уравнения движения точки и пройденный путь. Определение траектории точки. Скорость точки. Ускорение точки Касательное и нормальное ускорения.	Кинематика точки. Определение всех характеристик движения при координатном и естественном способах задания движения.	0,25	4
8.	Кинематика твердого тела. Поступательное движение. Вращательное движение тела. Уравнение движения. Угловая скорость и угловое ускорение тела. Скорость и ускорение точки тела. Передаточные механизмы.	Поступательное и вращательного движения твердого тела. Определение характеристик движения точек вращающегося тела.	0,5	4

9.	Плоское движение тела. Уравнения	Определение скоростей	0,5	4
	движения. Разложение плоского движения	точек с помощью МЦС		
	на поступательное и вращательное.			
	Теорема сложения скоростей точек			
	плоской фигуры. Мгновенный центр			
	скоростей (МЦС). Определение скоростей			
	точек с помощью МЦС. Частные случаи			
	определения МЦС.			
10.	Сложное движение точки. Абсолютное,	Определение	0,5	4
	относительное и переносное движения	абсолютной скорости и		
	точки. Относительные, переносные и	ускорения при сложном		
	абсолютные скорости и ускорения точки.	движении.		
	Теорема Кориолиса о сложении ускорений.			
	ИТОГО:		4	34

	Семестр №	4		
	Динамик	a		
1.	Динамика точки. Дифференциальные уравнения движения свободной и несвободной материальной точки в декартовых и естественных координатах. Две основные задачи динамики. Решение первой задачи. Решение второй задачи динамики.	Решение прямой и обратной задач динамики.	1,5	6
2.	Понятие о колебательном движении: свободные колебания точки, затухающие колебания точки, вынужденные колебания.	Колебательное движение точки.	0,5	4
3.	Общие теоремы динамики точки. Количество движения точки. Импульс силы. Вычисление импульса силы. Теорема об изменении количества движения точки в дифференциальной и конечной формах. Кинетический момент точки относительно центра и оси. Теорема об изменении кинетического момента точки.	Применение общих теорем динамики.	0,5	4
4.	Кинетическая энергия точки. Работа силы. Мощность. Примеры вычисления работы силы: тяжести, упругости, трения. Теорема об изменении кинетической энергии в дифференциальной и конечной формах.	Применение общих теорем динамики.	0,5	4
5.	Динамика механической системы. Механическая система. Силы активные и реакции связей, внутренние и внешние. Свойства внутренних сил. Момент инерции тела относительно оси. Теорема Гюйгенса. Примеры вычисления моментов инерции простейших однородных тел.	Определение момента инерции тела.	0,5	4
6.	Количество движения системы. Теорема об изменении количества движения системы и дифференциальной и конечной формах. Закон сохранения количества движения. Кинетический момент тела относительно оси вращения. Теорема об изменении кинетического момента системы. Закон сохранения кинетического момента	Применение теоремы об изменении количества движения системы и кинетического момента системы.	1	6

7.	Кинетическая энергия системы.	Применение теоремы	1,5	6
	Кинетическая энергия при поступательном,	об изменении		
	вращательном и плоском движениях тела.	кинетической		
	Работа силы, приложений к вращающемуся	энергии системы.		
	телу. Теорема об изменении кинетической			
	энергии системы.			
ИТОГО:			6	34
ВСЕГО:			10	68

4.3. Содержание лабораторных занятий

(Не предусмотрено учебным планом)

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов (типовых заданий)

$N_{\underline{0}}$	Содержание вопросов (типовых заданий)			
Π/Π	Содержание вопросов (типовых задании)			
Статика				
1.	Введение в механику.			
2.	Основные понятия статики. Задачи статики.			
3.	Аксиомы статики.			
4.	Связи и их реакции.			
5.	Типы связей и их реакции.			
6.	Система сходящихся сил. Сложение и разложение сил.			
7.	Система сходящихся сил. Проекция силы на ось и плоскость.			
8.	Система сходящихся сил. Аналитический способ сложения и задания сил.			
9.	Система сходящихся сил. Равнодействующая. Равновесие системы сходящихся сил.			
10.	Система сходящихся сил. Геометрическое и аналитическое условия равновесия.			
11.	Система сходящихся сил. Теорема о трех силах.			
12.	Центр моментов. Момент относительно центра.			
13.	Свойства момента силы.			
14.	Равновесие произвольной системы сил.			
15.	Теорема Вариньона. Сложение параллельных сил.			
16.	Теория пар сил расположенных в одной плоскости.			
17.	Момент пары. Теорема о сложении пар.			
18.	Теорема об эквивалентности пар. Свойства пары.			
19.	Теорема о сложении пар.			
20.	Плоская система сил. Теорема Пуансо.			
21.	Плоская система сил. Случаи приведения плоской системы сил			
22.	Плоская система сил. Условия равновесия плоской системы сил. Типы связей и их			
	реакции.			
23.	Система двух тел.			
24.	Распределенная нагрузка.			
25.	Определение реакции опор твердого тела.			
26.	Пространственная система сил. Момент силы относительно оси.			
27.	Пространственная система сил. Свойства момента. Теорема Вариньона.			
28.	Пространственная система сил. Главный вектор и главный момент пространственной			
	системы сил.			
29.	Пространственная система сил. Приведение пространственной системы сил.			

20	п		
30.	Пространственная система сил. Равновесие пространственной системы сил.		
31.	Пространственная система сил. Равновесие пространственной системы параллельных сил.		
32.	Центр параллельных сил.		
33.	Центр тяжести твердого тела.		
34.	Способы определения координат центров тяжести однородных тел.		
J 4 .			
1	Кинематика		
1.	Кинематика точки. Основные понятия и определения.		
2.	Предмет теоретической механики. Предмет кинематики. Основная задача кинематики.		
3.	Способы задания движения точки. Траектория точки. Векторный и координатный способы задания движения.		
4.	Способы задания движения точки. Естественный способ задания движения.		
5.	Определение скорости точки при векторном и координатном способе задания движения. Годограф скорости.		
6.	Определение скорости точки при естественном способе задания движения		
7.	Определение ускорения точки при векторном и координатном способе задания движения.		
8.	Определение ускорения точки при естественном способе задания движения. Естественные оси координат. Касательное и нормальное ускорение.		
9.	Частные случаи движения точки. Равномерное и равнопеременное движения.		
10.	Кинематика твердого тела. Поступательное движение твердого тела. Теорема о поступательном движении тела.		
11.	Кинематика твердого тела. Вращательное движение твердого тела.		
	Определение кинематических характеристик движения точек вращающегося тела.		
12.	Угловая скорость и угловое ускорение.		
13.	Частные случаи вращательного движения.		
14.	Определение линейных характеристик точек вращающегося тела.		
15.	Передаточные механизмы.		
	Плоское движение твердого тела. Уравнения движения. Разложение плоского движения		
16.	на поступательное и вращательное. Определение скоростей точек плоской фигуры.		
1.7	Мгновенный центр скоростей. Определение скоростей точек плоской фигуры с помощью		
17.	МЦС		
18.	Способы определения положения МЦС.		
19.	Определение угловых характеристик плоского тела.		
	Сложное движение точки. Основные понятия и определения. Абсолютное,		
20.	относительное и переносное движения.		
21.	Теорема о сложении скоростей.		
22.	Сложение ускорений. Теорема Кориолиса.		
23.	Ускорение Кориолиса. Правило Жуковского.		
	Динамика		
1.	Предмет динамики. Основные понятия и определения. Законы динамики.		
2.	Две основные задачи динамики точки.		
3.	Дифференциальные уравнения движения свободной и несвободной материальной точки.		
4.	Первая (прямая) задача динамики точки и ее решение.		
5.	Вторая (обратная) задача динамики точки и ее решение.		
6.	Задача о движении точки в поле сил тяжести без учета сил сопротивления среды		
7.	Задача о движении точки в поле сил тяжести без учета сил сопротивления среды		
8.	Свободные колебания точки. Амплитуда, фаза, частота и период свободных колебаний.		
9.	Свободные колеоания точки. Амплитуда, фаза, частота и период свооодных колеоании. Свободные колебания материальной точки под действием постоянной силы.		
10.	Свободные колебания материальной точки под действием постоянной силы. Свободные колебания точки с учетом сил сопротивления. Затухающие колебания.		
11.	Вынужденные колебания точки. Явление резонанса.		
11.	· · · · · · · · · · · · · · · · · · ·		
12.	Две меры механического движения. Количество движения. Импульс силы. Теорема об		
	изменении количества движения точки в дифференциальной и конечной формах.		

13.	Кинетический момент точки относительно центра и оси. Теорема об изменении		
	кинетического момента точки.		
14.	Кинетическая энергия. Работа и мощность силы. Примеры вычисления работ сил: тяжести, упругости, трения.		
15.	Теорема об изменении кинетической энергии точки в дифференциальной и конечной формах.		
16.	Механическая система материальных точек. Классификация сил, действующих на точки системы. Свойства внутренних сил. Дифференциальные уравнения движения, механические системы.		
17.	Масса механической системы. Центр масс. Моменты инерции системы относительно центра и оси. Радиус инерции.		
18.	Теорема Гюйгенса о моментах инерции относительно параллельных осей.		
19.	Момент инерции системы относительно произвольной оси. Центробежные моменты инерции. Главные и главные центральные оси инерции и их свойства		
20.	Динамические характеристики движения механической системы: количество движения, кинетический момент относительно центра или оси, кинетическая энергия.		
21.	Кинетическая энергия твердого тела при его поступательном, вращательном и плоском движениях.		
22.	Теорема о движении центра масс системы. Закон сохранения движения центра масс.		
23.	Теорема об изменении количества движения механической системы в дифференциальной и конечной формах. Следствия.		
24.	Теорема об изменении кинетического момента системы. Закон сохранения кинетического момента системы.		
25.	Теорема об изменении кинетической энергии механической системы. Работа и мощность силы, приложенной к вращающемуся телу.		

5.2. Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем

(Не предусмотрено учебным планом)

5.3. Перечень индивидуальных домашних заданий, расчетно-графических заданий

РГЗ № 1

- 1 С-1 Определение реакций опор твердого тела.
- 2 С-2 Определение реакций опор и усилий в стержнях плоской фермы.
- 3 С-7 Определение реакций опор твердого тела.
- 4. К-1 Определение скорости и ускорения точки по заданным уравнениям ее движения.
 - 5. К-3 Кинематический анализ плоского механизма.
- 2 К-7 Определение абсолютной скорости и абсолютного ускорения точки в сложном движении.

В результате решения РГЗ студент должен овладеть методами определения реакций связей и усилий возникающих в стержнях плоской фермы, уметь применять рассмотренные методы статики при решении поставленных задач. Студент должен овладеть методами определения кинематических характеристик движения точки и твердого тела. Уметь определять скорость и ускорение точки, в том числе и связанной с движущимся твердым телом.

РГЗ № 2

- 1 Д-1 Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил.
- 2 Д-6 Применение основных теорем динамики к исследованию движения материальной точки.
- 3 Д-10 Применение теоремы об изменении кинетической энергии к изучению движения механической системы.

В результате решения РГЗ студент должен овладеть методами решения задач динамики. Уметь определять закон движения точки, записывать уравнения движения и находить с скорость и ускорение точки и тела.

5.4. Перечень контрольных работ

(не предусмотрены учебным планом)

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

- 1 Тарг, С. М. Краткий курс теоретической механики: учеб. для втузов /С.М. Тарг. изд. 20-е, стер. М.: Высш. шк., 2010. 416 с.
- 2 Мещерский, И.В. Задачи по теоретической механике: учеб. пособ. / И.В. Мещерский. изд. 48-е, стер. СПб.: изд-во "Лань", 2008.-448 с.
- 3 Мещерский, И.В. Задачи по теоретической механике: учеб. пособ. / И.В. Мещерский. Электрон.текстовые данные. -СПб.: изд-во "Лань", 2012. -Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=2786
- 4 Яблонский, А.А. Сборник заданий для курсовых работ по теоретической механике: учеб. пособие для техн. вузов / А.А. Яблонский, С.С. Норейко, С.А. Вольфсон и др.; под ред. А.А. Яблонского. 13-е изд., стер. М.: Интеграл-Пресс, 2004. 384 с.
- 5 Воробьев, Н.Д. Сборник расчетно-графических заданий по теоретической механике с примерами выполнения: учеб. пособие для студентов всех направлений бакалавриата/ Н.Д. Воробьев. 2-е изд., перераб. и доп. Белгород: Изд-во БГТУ, 2009. 274 с.
- 6 Воробьев, Н.Д. Сборник расчетно-графических заданий по теоретической механике с примерами выполнения: учеб. пособие для студентов всех направлений бакалавриата/ Н.Д. Воробьев. Электрон.текстовые данные. -Белгород: Изд-во БГТУ, 2010. -Режим доступа: https://elib.bstu.ru/Reader/Book/2013040918111192511800002037

6.2. Перечень дополнительной литературы

- 1 Бать, М.И. Теоретическая механика в примерах и задачах. Том 1. Статика и кинематика: учеб. пособие/ М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. -Электрон.текстовые данные. СПб.: "Лань", 2013. -Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=4551
- 2 Бать, М.И. Теоретическая механика в примерах и задачах. Том 2. Динамика: учеб. пособие/ М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. Электрон.текстовые данные. -СПб.: "Лань", 2013. Режим доступа: 3. http://e.lanbook.com/books/element.php?pl1_id=4552
- 3 Дегтярь, А.Н. Кинематический анализ движения плоского многозвенного механизма: метод. указания к выполнению расчетно-графического задания по дисциплине «Теоретическая механика» для студентов всех специальностей/ А.Н. Дегтярь, И.В. Колмыкова. Белгород: Издво БГТУ, 2010.-42с.
- 4 Дегтярь А.Н. Применение теоремы об изменении кинетического момента к исследованию вращательного движения системы: методические указания к выполнению расчетнографического задания /А. Н. Дегтярь, И. В. Колмыкова. Белгород: Изд-во БГТУ, 2011. 24 с.
- 5 Дегтярь А.Н. Динамика материальной точки: методические указания к выполнению расчетно-графического задания /А.Н. Дегтярь, И В. Колмыкова. Белгород: Изд-во БГТУ, 2008. 20
- 6. Никитин Н.Н. Курс теоретической механики. Учебник. М., Высшая школа, 2003.
- 7 Воробьев, Н.Д. Теоретическая механика: учебное пособие / Н. Д. Воробьев, М. Ю. Ельцов, Л.

- Н. Спиридонова, С. К. Самойлова, А. Н. Дегтярь. Белгород: Изд-во БГТУ, 2004. 195 с
- 8 М.Я. Выгодский. Справочник по высшей математике. Государственное издательство физико-математической литературы. Москва, 1998.
- 9 М.Я. Выгодский. Справочник по элементарной математике. Из-во «Наука», Главная редакция физико-математической литературы, 1975.

6.3. Перечень интернет ресурсов

- 1 www.StandartGOST.ru
- www.eskd.ru
- 3 www.fips.ru
- 4 www.rupto.ru

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

- 1 Для презентации лекционного материала используется комплект оборудования: проектор, ноутбук и специализированное лицензионное программное обеспечение APM WinMachine, аудитория A1.
- 2 Практические занятия аудитория, оснащенная презентационной техникой, комплект электронных презентаций, компьютерный класс.
- 3.Для проведения практических занятий применяем комплект оборудования: проектор, ноутбук и специализированное лицензионное программное обеспечение APM WinMachine, аудитория 706 ГК.
- 4. Автоматизированная обучающая система по теме «Приведение пространственной системы сил к простейшему виду.
- 1 Вычислитель Microsoft Math.
- 2 Кинофильмы:

Введение в кинематик |

Движение точки под действием центральных сиЧ

Давление вращающегося тела на осе

Движение твердого тела с одной неподвижной точко

Законы сохранения в механик

Кинематика твердого тела-

Моменты силы относительно точки осс

Метод обращения движенил

Некоторые теоремы динамики механической системо

Относительное движение точко

Пара сиЧ

Приближенная теория Гироскопа-

Принцип возможных перемещенич

Связи в механик з

Свободные колебания механических систей

Состояние невесомост

Сложное движение точко

Сложение движений твердого тела-

Сферическое и свободное движение твердого тела-

Теорема о кинематическом момент з

Элементы динамики твердого тела-

Параметрические колебания и автоколебания механической системо

Параметрические колебания механической системө

3 Диафильмы:

Статика

Кинематика

Динамика

Позиционные и метрические задачи

Равновесие системы сил

Распределение скоростей и ускорений точек тела при вращательном движении

Утверждение рабочей программы без изменений	
Рабочая программа без изменений утверждена на 20/3/20/3	учеоныи год.
Протокол № заседания кафедры от <u>к_14</u> » 0 6	20/₹r.
Заведующий кафедрой подпись, фио	Derriepo A.H
Директор института	Yeapol B.A.

Утверждение рабочей програм		
Рабочая программа без изменени	й утверждена на 2018/2019	Эучебный год.
Протокол №/2 заседания	кафедры от « <u>14</u> » от	20/8г.
Заведующий кафедрой	нодпись, ФИО	Derreepo A.H.
Директор института	полинсь ФИО	Ybapol B.A.

Утверждение рабочей программы без изменений

Рабочая программа без изменений утверждена на 2019/2020 учебный год.

Протокол № 13 заседания кафедры от «11» июня 2019 г.

Заведующий кафедрой

подпись, ФИО

подпись, ФИО

Директор института_

Derrepo A.H.
Ybapol B.A.

Утверждение рабочей программы без изменений

Рабочая программа без изменений утверждена на 2020/2021 учебный год.

Протокол № 6 заседания кафедры от «24» марта 2020 г.

Заведующий кафедрой (ПФУЧ

подпись, ФИО

Derrepo A.H.
Ybapol B.A.

Директор института

подпись, ФИО

приложения

Приложение №1.

1.1 Подготовка к лекциям.

Инструментами освоения учебного материала являются основные термины и понятия, состаз ляющие категориальный аппарат дисциплины. Их осмысление, запоминание и практическо использование являются обязательным условием овладения курсом.

На первом лекционном занятии студенты получают перечень контрольных вопросов дисципла ны согласно п. 5.1.

В учебнике [1] из перечня основной литературы содержатся ответы на поставленные вопросы. Работая с литературой, студент в тетради выполняет краткий конспект ответа на вопрос. Материал, соответствующий содержанию каждого раздела изложен следующим образом: первый раздел -Введение в механику. Статика. Система сходящихся сил — стр. 9-23; второу раздел -Плоская система сил — стр. 31-55; третий раздел — Пространственная система сил ± стр. 72-79; четвертый раздел — Кинематика точки -стр. 95-111; пятый раздел -Кинематика твердого тела. Поступательное и вращательное движение — стр. 117-126; шестой раздел — Плоф копараллельное движение твердого тела — стр. 127-144; седьмой раздел -Введение в динамику. Динамика материальной точки — стр. 180-198; восьмой раздел -Общие теоремы динамики топ ки — стр. 201-214; девятый раздел -Теория механических колебаний материальной точки -стр. 232-249; десятый раздел -Динамика механической системы — стр. 263-273; одиннадцатый раздел -Общие теоремы динамики механической системы — стр. 274-283; стр. 290-294; стр. 301309; двенадцатый раздел — Основы аналитической механики — стр. 344-347; стр. 357-367.

В качестве дополнительных источников теоретического материала могут быть использованне интернет-ресурсы:

интернет-ресурс [2] http://exir.ru/termeh/ploskaya_sistema_shodyaschisa_sil.htm для изучения раздела «Сходящаяся система сил»:

интернет-ресурс [3] http://www.teoretmeh.ru/lect.html, содержат полную информацию по всеб разделам курса теоретической механики;

интернет-ресурс [4] http://window.edu.ru/resource/959/71959/files/samgtu_meh05.pdf подробн і демонстрирует теоретический материал по разделу «Динамика материальной точки»; интернет-ресурс [5] http://window.edu.ru/resource/956/71956/files/samgtu_meh02.pdf содержи і подробную информацию по разделу «Колебания материальной точки».

Если при составлении ответов на вопросы, сформулированные в перечне, у студента возникают затруднения, то необходимо снова вернуться к изучению соответствующей темы, более тщательно прорабатывая материал, либо обратиться за консультацией к преподавателю. 1.2. Подготовка к практическим занятиям.

Темы практических занятий соответствуют содержанию изучаемого теоретического материала. Подготовка к практическим занятиям заключается в самостоятельной работе студента с мат риалом конспекта лекций или источниками информации, рекомендованными выше, включал интернет-ресурсы. Для формирования умений и навыков решения задач, соответствующих т мам практических занятий необходимо воспользоваться учебным пособием из списка основноу литературы [2] или [3]

Mещерский И.В. Задачи по теоретической механике: учеб. пособ. / И.В. Мещерский. – изд. 48-е, стер. – СПб.: изд-во "Лань", 2008. – 448 с.

Мещерский И.В. Задачи по теоретической механике: учеб. пособ. / И.В. Мещерский. — Электрон. текстовые данные. -СПб.: изд-во "Лань", 2012. -Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=2786

Данное учебное пособие содержит задачи различной степени сложности по изучаемым темам: как типовые, предполагающие применение знаний в стандартной ситуации, так и повышенной сложности, при решении которых необходимо применить знания в измененной ситуации, что позволяет использовать личностно-ориентированный подход в обучении студентов.

1.3. Выполнение индивидуального домашнего задания, расчетно-графических заданий. Для успешного выполнения индивидуального домашнего и расчетно-графических заданий необходимо обязательное посещение студентами лекций и практических занятий, а также систематически повышать уровень самообразования. Основной целью выполнения индивидуальных заданий является систематизация знаний и закрепление умений и навыков решения задач по соответствующим разделам дисциплины.

Самостоятельная работа является главным условием успешного освоения материала изучаемой учебной дисциплины и формирования базовых знаний студента. Задания для ИДЗ и РГЗ согласно п.5.3. изложены в учебном пособии [4] *Яблонский*, А.А. Сборник заданий для курсовых работ по теоретической механике: учеб. пособие для техн. вузов / А.А. Яблонский, С.С. Норейко, С.А. Вольфсон и др.; под ред. А.А. Яблонского. – 13-е изд., стер. – М.: Интеграл-Пресс, 2004. – 384 с. Из списка основной литературы

Семестр №3. ИДЗ

С-1. Плоская система сил. Определение реакций опор твердого тела. Цель: способствовать формированию умений и навыков определения момента силы относительно центра, расчета реакций в опорах, исходя из условий равновесия твердого тела под действием плоской системы сил. С-2. Плоская стержневая конструкция. Определение реакций опор фермы на заданную нагрузку, а также силы во всех ее стержнях. Цель: освоение методики и формирование практических навыков определения усилий в стержнях плоской фермы двумя аналитическими способами – методом вырезания узлов и методом Риттера. С-7. Система сил, не лежащих в одной плоскости. Определение реакций опор твердого тела. Цель: способствовать формированию умений и навыков определения момента силы относительно оси, расчета реакций опор твердого тела, применив условия равновесия пространственной системы сил. К-1. Определение скорости и ускорения точки по заданным уравнениям движения. Цель: способствовать формированию умений и навыков применения теоретических знаний для расчета скорости и ускорения точки при координатном способе задания движения, определять тангенциальное и нормальное ускорения точки для заданного момента времени, анализируя полученный результат, определять вид движения, совершаемый точкой. К-3. Плоское движение твердого тела. Цель: способствовать формированию умений и навыков определения кинематических характеристик точек, принадлежащих телу механической системы, совершающему плоско -параллельное движение; применения зависимости между угловыми характеристиками движения твердого тела и линейными характеристиками движения точек; уметь записывать уравнения плоского движения твердого тела, выражающиеся через уравнения движения любой точки плоской фигуры; уметь определять мгновенный центр скоростей плоской фигуры; уметь пользоваться разложением плоского движения твердого тела на переносное и относительное движения при определении скоростей и ускорений точек плоской фигуры. К-7. Определение абсолютной скорости и абсолютного ускорения точки находящейся в сложном движении. Цель: освоить основные положения сложного движения точки, состоящего из нескольких движений; получить навыки практического использования теорем сложения скоростей и ускорений в сложном движении точки; освоить методику использования кинематической теоремы Кориолиса, методы построения и вычисления ускорения Кориолиса, в том числе построения ускорения Кориолиса по методу Жуковского.

Семестр № 4. РГЗ №1

Д-1. Интегрирование дифференциальных уравнений движения точки, находящейся под действием постоянных сил. цель: способствовать формированию навыков составления дифференциальных уравнений движения точки и умений определять характеристики движения точки на прямолинейном и криволинейном участках траектории методом интегрирования. Д-6. Применение основных теорем динамики к исследованию движения материальной точки. цель: способствовать формированию умений и навыков определения работы сил тяжести, трения, упругости, применения общих теорем динамики точки в различных ситуациях для определения скорости точки на прямолинейных и криволинейных участках траектории; показать значимость и преимущества применения общих теорем динамики точки перед методом интегрирования дифференциальных уравнений движения точки при исследовании ее движения на прямолинейном участке траектории.

Семестр № 4. Р ГЗ №2

Д-10. Применение теоремы об изменении кинетической энергии к изучению движения механической системы. Цель: формировать умения определять работу сил тяжести механической системы, силы, приложенной к вращающемуся телу, сил трения качения по твердой и деформируемой поверхности, навыков расчета кинетической энергии тел системы, совершающих

поступательное, вращательное или плоское движение, научить рассчитывать характеристики тел системы, применяя теорему об изменении кинетической энергии механической системы для систем с идеальными связями. Если поток, состоит из нескольких групп, то в качестве источника индивидуальных заданий для ИДЗ и РГЗ, по усмотрению преподавателя, как альтернатива выше названному источнику, может быть использовано учебное пособие [5] из перечня основной литературы Воробьев, Н.Д. Сборник расчетно-графических заданий по теоретической механике с примерами выполнения: учеб. пособие для студентов всех направлений бакалавриата/ Н.Д. Воробьев. — 2-е изд., перераб. и доп. — Белгород: Изд-во БГТУ, 2009. — 274 с. или его электронная версия [6] из перечня основной литературы Воробьев, Н.Д. Сборник расчетно-графических заданий по теоретической механике с примерами выполнения: учеб. пособие для студентов всех направлений бакалавриата/ Н.Д. Воробьев. — Электрон.текстовый документ. -Режим доступа: https://elib.bstu.ru/Reader/Book/2013040918111192511800002037

Для ознакомления с методикой и примерами решения задач по всем разделам дисциплины следует использовать источники [1], [2] из перечня дополнительной литературы. *Бать*, *М.И.* Теоретическая механика в примерах и задачах. Том 1. Статика и кинематика: учеб. пособие/ М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон.. – Электрон.текстовые данные. -СПб.: "Лань", 2013. -Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=4551 *Бать*, *М.И.* Теоретическая механика в примерах и задачах. Том 2. Динамика: учеб. пособие/ М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. – Электрон.текстовые данные. -СПб.: "Лань", 2013. – Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=4552

Наибольшее затруднение при выполнении ИДЗ вызывает решение задач по теме «Плоскопараллельное движение твердого тела», это связано с необходимостью сопоставления результатов аналитического расчета и геометрического построения рассчитываемых величин в масштабе. Для более детального осмысления материала и систематизации знаний по данной теме студентам рекомендовано использовать методические указания из перечня дополнительной литературы [3] Дегтярь, А.Н. Кинематический анализ движения плоского многозвенного механизма: метод. указания к выполнению расчетно-графического задания по дисциплине «Теоретическая механика» для студентов всех специальностей/ А.Н. Дегтярь, И.В. Колмыкова. — Белгород: Изд-во БГТУ, 2010.-42с. Оформление индивидуальных заданий необходимо выполнять согласно требованиям, изложенным в источнике [6] http://teormeh.bstu.ru/shared/attachments/48666 интернет-ресурсов, используя интернет-ресурсов материала из [7] http://standartgost.ru/ интернет-ресурсов. Защита ИДЗ и РГЗ проходит в виде решения студентом краткой индивидуальной задачи по соответствующей теме. Тем самым обучающийся подтверждает, что данный раздел дисциплины им освоена, и навыки применения теоретических знаний к решению задач по соответствующей теме сформированы.

Для самоконтроля над процессом усвоения тем курса студенту следует воспользоваться тестом [1] http://www.teoretmeh.ru/test.htm, предложенным в перечне интернет-ресурсов. Если некоторые вопросы вызывают затруднения или студент систематически повторяет одни и те же ошибки, то следует обратиться за консультацией к преподавателю.

1.4. Экзамен по дисциплине -Теоретическая механика.

Формой промежуточной аттестации по дисциплине «Теоретическая механика» по окончании семестра №2 является зачет. Зачет получают студенты, освоившие практическую часть, согласно рабочей программы п.4.2., выполнившие и защитившие ИДЗ п.5.3.

По окончании семестра №3 формой промежуточной аттестации является экзамен. Для подготовки к экзамену студент получает перечень контрольных вопросов согласно п.5.1., в соответствии с которым преподаватель составляет экзаменационный материал. К сдаче экзамена допускаются студенты, освоившие практическую часть, согласно рабочей программы п.4.2., выполнившие и защитившие РГЗ п.5.3. Экзаменационный билет состоит из трех вопросов: один – теоретический; второй и третий – практические, в виде задач. Экзамен принимает комиссия, состоящая из двух человек.