МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г. Шухова)

УТВЕРЖДАЮ
Директор института ИСИ
д.т.н., проф
В.А. Уваров
« 12 » _______ 20 21 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

Теоретическая механика

направление подготовки (специальность):

22.03.01 Материаловедение и технологии материалов

Направленность программы (профиль, специализация): Материаловедение и технологии конструкционных и специальных материалов

Квалификация

<u>Бакалавр</u>

Форма обучения

Очная

Институт: Инженерно-строительный

Кафедра: Теоретической механики и сопротивления материалов

бакалавриата) утвержденного приказом министерства образовани
и науки Российской Федерации от 2 июня 2020 год
№ 701
 плана учебного процесса БГТУ им. В.Г. Шухова, введенного действие в 20 № году.
Es al
Составитель (составители): к.т.н. (И.Р. Бондаренко) (инициалы, фамилия)
Рабочая программа обсуждена на заседании кафедры
1. 1.5 a 25 a 21
« Н » <u>мајума</u> 20 <u>21</u> г., протокол №
«
Рабочая программа согласована с выпускающей (ими) кафедрой (ами) <u>Материаловедения и технологии материалов</u> (наименование кафедры/кафедр)
fat fif
Заведующий кафедрой: д.т.н., проф. (В.В. Строкова) (ученая степень и звание, подпись) (инициалы, фамилия)
« 8 » anners 20 21 r.
Рабочая программа одобрена методической комиссией института
« <u>19</u> » <u>арыя</u> 20 <u>21</u> г., протокол №9
Λ
Председатель к.т.н., доц (А.Ю. Феоктистов)
(ученая степень и звание, подпись) (инициалы, фамилия

Рабочая программа составлена на основании требований:

«Материаловедение и

■ Федерального государственного образовательного

высшего образования по направлению подготовки

технологии

стандарта 22.03.01

(уровень

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

	T	T	
Категория	Код и наименование	Код и наименование	Наименование показателя
(группа)	компетенции	индикатора достижения	оценивания результата
компетенций Фундаментальная		компетенции	обучения по дисциплине
подготовка	ОПК-1. Способен	ОПК-1.1.	Знать: законы, положения
	решать задачи	Выявляет и	и гипотезы теоретической
	профессиональной	классифицирует	механики, возможность их
	деятельности,	физические и	применения при решении проблем встречающихся в
	применяя методы	химические	профессиональной
	моделирования,	процессы,	деятельности
	математического	протекающие на	деятельности
		_ ·	Уметь: применять базовые
	анализа,	объекте	•
	естественнонаучные	профессиональной	законы механики в
	и общеинженерные	деятельности	процессе разработки
	знания.		математических моделей
			рабочих процессов, а также
		ОПК-1.4.	в ходе проведения
		Представляет	теоретических и
		базовые для	экспериментальных
		' '	исследований
		профессиональной	необходимых для решения
		сферы физические	-
		процессы и явления	практических задач.
		в виде	Владеть: методами и
		математического(их)	
		уравнения(й)	техникой применения основных законов
) publication (ii)	
			механики при решении профессиональных задач.
			профессиональных задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

1. Компетенция ОПК-1. Способен решать задачи профессиональной деятельности, применяя методы моделирования, математического анализа, естественнонаучные и общеинженерные знания.1

Панная компетенция формируется спелующими лисциплинами

данная	компетенция формируется следующими дисциплинами.
Стадия	Наименования дисциплины ²
1	Высшая математика
2	Физика
3	Общее материаловедение и технология материалов
4	Экология
5	Компьютерная графика
6	Начертательная геометрия и инженерная графика
7	Теоретическая механика
8	Неорганическая химия
9	Органическая химия
10	Физическая химия
11	Физика твёрдого тела
12	Физическая химия высокомолекулярных соединений

 $^{^{1}}$ Повторить пункт 1 для каждой компетенции, которые выбраны в разделе 1 рабочей программы

² В таблице должны быть представлены все дисциплин и(или) практики, которые формируют компетенцию в соответствии с компетентностным планом. Дисциплины и(или) практики указывать в порядке их изучения по учебному плану.

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет <u>4</u> зач. единиц, <u>144</u> часов.		
Дисциплина реализуется в рамках	практической подготовки ³ :	
Форма промежуточной аттестации	зачет	
	(экзамен, дифференцированный зачет, зачет)	

Вид учебной работы 4	Всего	Семестр
1	часов	№ 3
Общая трудоемкость дисциплины, час	144	144
Контактная работа (аудиторные	71	71
занятия), в т.ч.:		
лекции	34	34
лабораторные		
практические	34	34
групповые консультации в период	3	3
теоретического обучения и		
промежуточной аттестации5		
Самостоятельная работа студентов,	73	73
включая индивидуальные и групповые		
консультации, в том числе:		
Курсовой проект		
Курсовая работа		
Расчетно-графическое задание	18	18
Индивидуальное домашнее задание		
Самостоятельная работа на подготовку к	55	55
аудиторным занятиям (лекции,		
практические занятия, лабораторные		
занятия)		
Дифференцированный зачет	-	-

³ если дисциплина не реализуется в рамках практической подготовки – предложение убрать

не менее 0,5 академического часа самостоятельной работы на 1 час лекций,

⁴ в соответствии с ЛНА предусматривать

⁻ не менее 1 академического часа самостоятельной работы на 1 час лабораторных и практических занятий,

^{- 36} академических часов самостоятельной работы на 1 экзамен

 ⁵⁴ академических часов самостоятельной работы на 1 курсовой проект, включая подготовку проекта, индивидуальные консультации и защиту

 ³⁶ академических часов самостоятельной работы на 1 курсовую работу, включая подготовку работы, индивидуальные консультации и защиту

^{– 18} академических часов самостоятельной работы на 1 расчетно-графическую работу, включая подготовку работы, индивидуальные консультации и защиту

 ⁹ академических часов самостоятельной работы на 1 индивидуальное домашнее задание, включая подготовку задания, индивидуальные консультации и защиту

⁻ не менее 2 академических часов самостоятельной работы на консультации в период теоретического обучения и промежуточной аттестации

⁵ включают предэкзаменационные консультации (при наличии), а также текущие консультации из расчета 10% от лекционных часов (приводятся к целому числу)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Наименование тем, их содержание и объем Курс <u>2</u> Семестр <u>3</u>

			ем на т ел по ви нагру:		небной
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа на подготовку к аудиторным занятиям б
	Статика	1	1	1	
1.1	Основные понятия и определения статики. Основные аксиомы статики. Задачи статики. Типы связей и их реакции.	2	-		1
1.2	Система сходящихся сил. Сложение сходящихся сил. Проекция силы на ось и на плоскость. Теорема о проекции вектора суммы на ось. Геометрические и аналитические условия равновесия сходящихся сил на плоскости и в пространстве. Теорема о трех непараллельных силах. Системы статически определимые и неопределимые. Решение задач статики.	2	2		3
1.3	Момент силы относительно центра. Свойства момента силы. Сложение параллельных сил. Сосредоточенные силы и распределенные нагрузки. Пара сил. Момент пары. Теоремы об эквивалентности и о сложении пар.	3	2		4
1.4	Теорема Вариньона. Произвольная плоская система сил. Условие равновесия плоской произвольной системы сил. Понятие о ферме. Методы расчета плоских ферм. Определение усилий в стержнях фермы методом вырезания узлов.	3	4		6
1.5	Пространственная система сил. Момент силы относительно оси. Теорема Вариньона о моменте равнодействующей. Теорема о параллельном переносе силы. Приведение системы сил к одному центру. Вычисление главного вектора и главного момента системы. Частные случаи: равнодействующая, пара сил, динамический винт.	3	2		4
1.6	Аналитическое условие равновесия произвольной пространственной системы сил. Центр параллельных сил. Центр тяжести.	2	2		4
2. Кинематика					
2.1	Кинематика точки. Способы задания движения точки. Уравнения движения точки и пройденный путь.	2	2		3

 $^{^{6}}$ Указать объем часов самостоятельной работы для подготовки к лекционным, практическим, лабораторным занятиям

		1	1	
	Определение траектории точки. Скорость точки.			
	Ускорение точки. Оси естественного трехгранника.			
	Касательное и нормальное ускорения.			
2.2	Кинематика твердого тела. Поступательное движение.	2	2	3
	Вращательное движение тела. Уравнение движения.			
	Угловая скорость и угловое ускорение тела. Скорость и			
	ускорение точки тела. Передаточные механизмы.			
	Плоское движение тела. Уравнения движения.			
	Разложение плоского движения на поступательное и			
2.3	вращательное. Теорема сложения скоростей точек	2	3	4
2.3	плоской фигуры. Мгновенный центр скоростей (МЦС).	2	3	4
	Определение скоростей точек с помощью МЦС.			
	Частные случаи определения МЦС.			
	Динамика			
3.1	Динамика точки. Дифференциальные уравнения	2	2	3
	движения свободной и несвободной материальной	~	_	
	точки в декартовых и естественных координатах. Две			
	основные задачи динамики. Решение первой задачи.			
	Решение второй задачи динамики.			
3.2	Понятие о колебательном движении: свободные	1	2	3
	колебания точки, затухающие колебания точки,			
	вынужденные колебания.			
3.3	Общие теоремы динамики точки. Количество	2	2	3
	движения точки. Импульс силы. Вычисление импульса			
	силы. Теорема об изменении количества движения			
	точки в дифференциальной и конечной формах.			
3.4	Работа силы. Мощность. Примеры вычисления работы	2	2	3
	силы: тяжести, упругости, трения. Теорема об		2	3
	изменении кинетической энергии в дифференциальной			
	и конечной формах.			
3.5	Динамика механической системы. Механическая	2	2	3
	система. Момент инерции тела относительно оси.	-	_	
	Радиус инерции. Теорема Гюйгенса.			
3.6	Теорема о движении центра масс. Закон сохранения	1	1	2
	движения центра масс. Иллюстрация закона.	_	_	_
3.7	Количество движения системы. Теорема об изменении	1	1	2
	количества движения системы. Теорема об изменении	1	1	<i>L</i>
	кинетического момента системы. Закон сохранения			
	кинетического момента.			
3.8	Кинетическая энергия системы. Кинетическая энергия			
5.0	при поступательном, вращательном и плоском	2	3	4
	движениях тела. Работа силы, приложений к			
	вращающемуся телу. Теорема об изменении			
	кинетической энергии системы.			
	•	24	24	<i>E E</i>
	ВСЕГО	34	34	55

4.2. Солепжание практических (семинарских) занятий

	4.2. Содержа			4.2. Содержание практических (семинарских) занятий			
№ π/π	Наименование раздела дисциплины	Тема практического (семинарского) занятия	К-во часов	Самостоятельная работа на подготовку к аудиторным занятиям ⁷			
		семестр № 3		1			
1.	Статика	Проекция силы на ось.	1	1			
2.			1	1			
		Равновесие твердого тела под действием сходящейся системы сил.	-				
3.		Определение момента силы относительно центра.	2	2			
4.		Определение реакций опор твердого тела под действием плоской произвольной системы сил.	2	2			
5.		Расчет плоских ферм. Метод вырезания узлов.	1	1			
6.		Расчет плоских ферм. Метод сечений (Риттера).	1	1			
7.		Момент силы относительно оси. Приведение произвольной системы сил к простейшему виду. Определение главного вектора и главного момента произвольной системы сил.	2	2			
8.		Произвольная пространственная система сил. Определение реакций опор твердого тела.	2	2			
9.	Кинематика	Кинематика точки. Определение скорости и ускорения точки при координатном и естественном способах задания движения.	2	2			
10.		Поступательное и вращательного движения твердого тела. Определение кинематических характеристик движения точек вращающегося тела.	2	2			
11.		Плоское движение твердого тела. Определение скоростей точек с помощью МЦС.	2	2			
12.		Абсолютное, относительное и переносное движения точки. Относительные, переносные и абсолютные скорости и ускорения точки. Теорема Кориолиса о сложении ускорений	1	1			
13.	Динамика	Решение прямой задачи динамики.	1	1			
14.		Решение обратной задачи динамики.	3	3			
15.		Работа силы. Мощность. Примеры вычисления работы силы: тяжести, упругости, трения. Теорема об	2	2			

 $[\]overline{}^7$ Количество часов самостоятельной работы для подготовки к практическим занятиям

	изменении кинетической энергии в дифференциальной и конечной формах.		
	Применение общих теорем динамики материальной точки.	2	2
16.	Определение момента инерции твердых тел.	2	2
17.	Теорема о движении центра масс. Закон сохранения движения центра масс.	1	1
18.	Применение теоремы об изменении кинетического момента системы.	1	1
19.	Применение теоремы об изменении кинетической энергии системы.	3	3
1	ИТОГО:	34	34
		ВСЕГО:	68

4.3. Содержание лабораторных занятий

Не предусмотрены учебным планом

4.4. Содержание курсового проекта/работы⁸

Не предусмотрены учебным планом

4.5. Содержание расчетно-графического задания, индивидуальных домашних заданий⁹

В процессе выполнения расчетно-графического задания, индивидуальных домашних заданий осуществляется контактная работа обучающегося с преподавателем. Консультации проводятся в аудитория и/или посредствам электронной информационно-образовательной среды университета.

РГЗ (18 часов)

1. Равновесие твёрдого тела под действием плоской системы сил.

⁸ Если выполнение курсового проекта/курсовой работы нет в учебном плане, то в данном разделе необходимо указать «Не предусмотрено учебным планом»

указать «Не предусмотрено учебным планом»
⁹ Если выполнение расчетно-графического задания/индивидуального домашнего задания нет в учебном плане, то в данном разделе необходимо указать «Не предусмотрено учебным планом»

- 2. Определение усилий в стержнях плоской фермы.
- 3. Равновесие твёрдого тела под действием пространственной системы сил.
- 4. Определение кинематических характеристик движения точки по заданным уравнениям ее движения.
- 5. Определение скоростей и ускорений точек вращающегося твердого тела.
- 6. Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил.
- 7. Применение основных теорем динамики к исследованию движения материальной точки.
- 8. Применение основных теорем динамики к исследованию движения механической системы.

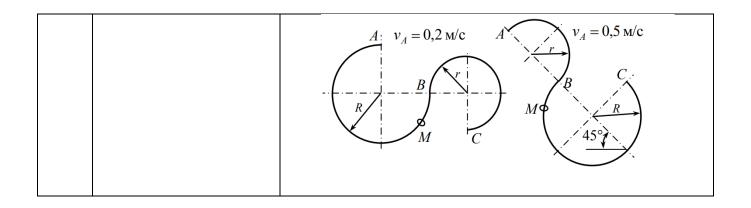
В результате решения РГЗ студент должен овладеть методами определения реакций связей и уметь применять их при решении поставленных задач, овладеть методами определения кинематических характеристик движения точки и твердого тела. Уметь определять скорость и ускорение точки и точек твердого тела. Овладеть методами решения задач динамики. Уметь определять закон движения точки, записывать дифференциальные уравнения движения и находить закон изменения скорости и закон движения точки и тела.

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1. Реализация компетенций

1 Компетенция ОПК-1. Способен решать задачи профессиональной деятельности, применяя методы моделирования, математического анализа, естественнонаучные и общеинженерные знания. ¹⁰

Науманаранна индикатара настимания кампатания	Используемые средства
Наименование индикатора достижения компетенции	оценивания
Выявляет и классифицирует физические и химические	защита РГЗ, решение типовых
процессы, протекающие на объекте профессиональной	контрольных заданий, собеседование.
деятельности.	
Представляет базовые для профессиональной сферы	защита РГЗ, решение типовых
физические процессы и явления в виде	контрольных заданий, собеседование,
математического(их) уравнения(й)	зачет


5.2. Типовые контрольные задания для промежуточной аттестации

5.2.1. Перечень контрольных вопросов (типовых заданий) для экзамена / дифференцированного зачета / зачета

	Наименование	Содержание вопросов (типовых заданий)
No	раздела дисциплины	
п/п		
1	Статика	Определить силы реакции опор балки, находящейся под действием заданной системы сил. М
		Д Amm A mm
		Определить опорные реакции и усилия в заданных стержнях плоской фермы.
		\overline{F}_2
		3,м
		$\overline{F_1}$ $\overline{F_1}$ \overline{AM} \overline{AM} \overline{AM} \overline{AM} \overline{AM} \overline{AM} \overline{AM}
		Определить реакции петель и усилие в стержне,
		удерживающем полку в горизонтальном
		положении, если вес полки равен Р.

 $^{^{10}}$ Повторить пункт 1 для каждой компетенции, закрепленной в разделе 1.

		B
	Кинематика	По данным уравнениям движения точки: $x = 2 - 3\cos 5t$, $y = 4\sin 5t - 1$; найти уравнения еè траектории в координатной форме и указать на рисунке направление движения Зубчатая передача приводится в движение грузом 1, подвешенным к колесу 2. На одной оси с колесом 2 укреплено колесо 3, которое сцепляется с колесом 4. Определить скорость и ускорение точки М на ободе колеса 4 в момент времени $t=1c$. Груз движется по закону: $x = 3t + 1,5t^2$
3	Динамика	Тело М массой m движется горизонтально под действием силы F . Коэффициент трения скольжения тела о плоскость равен f . Найти уравнение движения тела, если g начальный момент времени g х g

5.2.2. Перечень контрольных материалов для защиты курсового проекта/ курсовой работы

Не предусмотрено учебным планом.

5.3. Типовые контрольные задания (материалы) для текущего контроля в семестре

При изучении дисциплины предусмотрено выполнение контрольных заданий. Проводится контроль после освоения студентами соответствующих разделов дисциплины. Работы выполняется студентами в аудитории, под наблюдением преподавателя. Продолжительность выполнения 20-45 минут.

Типовые задания для текущего контроля

<u>№</u> п/п	Типовое задание	Ответы
1	Определить реакцию опоры В, если F=5кH q=4кH/м M=10кHм	B M F M
2	Определить реакцию опоры В, если F=8кH q=4кH/м М=5кНм	A B 800 A B 80
3	Угловая скорость зубчатого колеса 1 изменяется по закону $\omega=2t^2$. Определить ускорение груза 3 в момент времени $t=2$ с, если радиусы шестерен $R1=1$ м, $R2=0.8$ м и радиус барабана $r=0.4$ м.	
4	Дано уравнение движения точки по криволинейной траектории: $s=0.1t^2+0.2t$. Определить ее нормальное ускорение в момент времени $t=6$ с. В положении, занимаемом точкой в этот момент, радиус кривизны траектории $\rho=0.6$ м.	-

5	По шероховатой наклонной плоскости, составляющей с горизонтом угол = 30° , спускается тело без начальной скорости. Определить, в течение какого времени t тело пройдет путь длины $l=40$ м, если коэффициент трения $f=0.1$.	\overline{N} \overline{F}_{mp} \overline{v}_x α $m\overline{g}$
6	Через блок А весом Q переброшена невесомая нерастяжимая нить, к концам которой прикреплены грузы М1 и М2 весом Р1 и Р2 соответственно. Грузы расположены на гладких плоскостях, отклоненных от горизонта на углы 30° и 60°. Считая блок однородным диском, определить ускорение грузов.	M_2 M_1 M_2 M_1 M_2 M_1
7	Дано: Схема механизма Q =100 H ; коэффициент жесткость пружины c = 5 H/см ; $r=10$ см ; $R=20$ см ; $m_1=2$ кг, $m_2=1$ кг, $m_2=5$ кг. Определить удлинение h пружины.	

5.4. Описание критериев оценивания компетенций и шкалы оценивания

При промежуточной аттестации в форме дифференцированного зачета, используется следующая шкала оценивания: 2 — неудовлетворительно, 3 — удовлетворительно, 4 — хорошо, 5 — отлично 11 .

Критериями оценивания достижений показателей являются:

Наименование	Критерий оценивания	
показателя		
оценивания		
результата обучения		
по дисциплине		
Знания	Знание терминов, определений, понятий	
	Знание основных законов, теорем, принципов и методов решения задач	
	механики	
	Четкость изложения и интерпретации знаний	
Умения	Уметь применять на практике полеченные знания	
Навыки	Владение принципами решения задач механики	
	Владение методами моделирования задач механики	

Оценка преподавателем выставляется интегрально с учётом всех показателей и критериев оценивания.

¹¹ B ходе текущей аттестации могут быть использованы балльно-рейтинговые шкалы.

Оценка сформированности компетенций по показателю знания.

Критерий	Уровень освоения и оценка			
	2	3	4	5
Знание терминов, определений, понятий Знание основных	Не знает терминов и определений Не знает	Знает термины и определения, но допускает неточности формулировок Знает, но	Знает термины и определения Знает основные	Знает термины и определения, может корректно сформулировать их самостоятельно Знает основные
законов, теорем, принципов и методов решения задач механики	основных законов, теорем, принципов и методов решения задач механики	допускает неточности при изложении основных теорем статики; условий равновесия сходящейся, плоской и пространственной систем сил; знает основные виды движения; основные законы динамики точки. Рассказывает об основных методах решения задач по изученным разделам.	теоремы статики; условия равновесия сходящейся, плоской и пространственной систем сил; основные теоремы кинематики; виды движения; основные теоремы и законы динамики точки и системы материальных точек, может изложить методы решения задач по изученным разделам.	понятия и аксиомы теоретической механики; основные теоремы статики; условия равновесия сходящейся, плоской и пространственной систем сил; основные теоремы кинематики; виды движения; основные теоремы и законы динамики точки и системы материальных точек, Самостоятельно может изложить методы решения задач по изученным разделам.
Четкость изложения и интерпретации знаний	Не может излагать и интерпретировать полученные знанаия	Обучающийся допускает неточности при изложении: классификации основных форм и объектов расчетов	Может излагать классификацию основных форм и объектов расчетов; основные понятия и аксиомы теоретической механики;	Исчерпывающе, последовательно, четко и логически стройно излагает классификацию основных форм и объектов расчетов;

Оценка сформированности компетенций по показателю умения.

Критерий		Уровень ос	воения и оценка	
	2	3	4	5
Уметь применять на практике полеченные знания	Не умеет применять на практике полученные знания	Выполняет на практике задачи расчета на равновесие конструкций, но допускает ошибки. может составлять кинематические уравнения и может составлять дифференциальные уравнения движения точки и системы точек допуская неточности.	выполняет на практике расчет на равновесие; может составлять кинематические уравнения и определять основные кинематические характеристики движения; может составлять дифференциальные уравнения движения точки и системы точек	Самостоятельно может применять на практике методы расчета конструкций на равновесие; определять основные кинематические характеристики движения; составлять дифференциальные уравнения движения материальных точки и системы материальных точек; получать конечные уравнения движения точки и системы материальных точек (твердого тела).

Оценка сформированности компетенций по показателю навыки.

Критерий	Уровень освоения и оценка			
1 1	2	3	4	5
Владение принципами решения задач механики	Не владеет принципами решения задач механики	С дополнительной помощью может выполнить переход от реального объекта к расчетной схеме в зависимости от конкретных условий	Может произвести переход от реального объекта к расчетной схеме в зависимости от конкретных условий.	Владеет способами перехода от реального объекта к расчетной схеме в зависимости от конкретных условий, принципами решения задач механики
Владение методами моделирования задач механики	Не владеет методами моделирования и расчета задач механики	С дополнительной помощью может осуществлять расчет простых конструкций на равновесие; Расчет характеристик движения точки;	Может применять основные методы расчета простых конструкций на равновесие; методами расчета характеристик движения точки;	Методами моделирования задач механики. Методами расчета простых и составных конструкций на равновесие; Методами

		методами исследования движения материальной точки.	расчета характеристик движения точки и твердого тела; Методами исследования движения механических систем.
--	--	--	---

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

6.1. Материально-техническое обеспечение

No	Наименование специальных помещений и	Оснащенность специальных помещений и
	помещений для самостоятельной работы	помещений для самостоятельной работы
1.	Специализированная аудитория	Учебная мебель, компьютеры с выходом в
		интернет, презентационная техника

6.2. Лицензионное и свободно распространяемое программное обеспечение

№	Перечень лицензионного программного	Реквизиты подтверждающего документа
	обеспечения.	
	Не используется в учебном процессе	

6.3. Перечень учебных изданий и учебно-методических материалов

- 1. *Тарг, С. М.* Краткий курс теоретической механики: учеб. для втузов /С.М. Тарг. изд. 20-е, стер. М.: Высш. шк., 2010. 416 с.
- 2. Курс теоретической механики [Электронный ресурс] : учебник / Н. Н. Никитин. Москва : Лань, 2011. 720 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=1807
- 3. *Мещерский, И.В.* Задачи по теоретической механике: учеб. пособ. / И.В. Мещерский. изд. 48-е, стер. СПб.: изд-во "Лань", 2008. 448 с.
- 4. *Мещерский, И.В.* Задачи по теоретической механике: учеб. пособ. / И.В. Мещерский. –Электрон.текстовые данные. СПб.: изд-во "Лань", 2012. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=2786
- 5. *Яблонский, А.А.* Сборник заданий для курсовых работ по теоретической механике: учеб. пособие для техн. вузов / А.А. Яблонский, С.С. Норейко, С.А. Вольфсон и др.; под ред. А.А. Яблонского. 13-е изд., стер. М.: Интеграл-Пресс, 2004. 384 с.
- 6. *Воробьев*, *Н.Д*. Сборник расчетно-графических заданий по теоретической механике с примерами выполнения: учеб. пособие для студентов всех направлений бакалавриата/ Н.Д. Воробьев. 2-е изд., перераб. и доп. Белгород: Изд-во БГТУ, 2009. 274 с
- 7. *Воробьев, Н.Д.* Сборник расчетно-графических заданий по теоретической механике с примерами выполнения: учеб. пособие для студентов всех направлений бакалавриата/

- Н.Д. Воробьев. Электрон.текстовые данные. Белгород: Изд-во БГТУ, 2010. Режим доступа: https://elib.bstu.ru/Reader/Book/2013040918111192511800002037
- 8. *Бать*, *М.И.* Теоретическая механика в примерах и задачах. Том 1. Статика и кинематика: учеб. пособие/ М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. Электрон.текстовые данные. СПб.: "Лань", 2013. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=4551
- 9. *Бать*, *М.И.* Теоретическая механика в примерах и задачах. Том 2. Динамика: учеб. пособие/ М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. Электрон.текстовые данные. СПб.: "Лань", 2013. Режим доступа:
- 10. http://e.lanbook.com/books/element.php?pl1_id=4552
- 11. Дегтярь A.H. Применение теоремы об изменении кинетического момента к исследованию вращательного движения системы: методические указания к выполнению расчетно-графического задания /А. Н. Дегтярь, И. В. Колмыкова. Белгород: Изд-во БГТУ, 2011.-24 с.
- 12. Дегтярь A.H. Динамика материальной точки: методические указания к выполнению расчетно-графического задания /A. Н. Дегтярь, И. В. Колмыкова. Белгород: Изд-во БГТУ, 2008. 20 с.
- 13. *Воробьев*, *Н.Д.* Теоретическая механика: учебное пособие / Н. Д. Воробьев, М. Ю. Ельцов, Л. Н. Спиридонова, С. К. Самойлова, А. Н. Дегтярь. Белгород: Изд-во БГТУ, 2004. 195 с
- 14. М.Я. Выгодский. Справочник по высшей математике. Государственное издательство физико-математической литературы. Москва, 1998 и др.

6.4. Перечень интернет ресурсов, профессиональных баз данных, информационно-справочных систем

- 1. http://eqworld.ipmnet.ru/
- 2. http://www.teoretmeh.ru/
- 3. http://www.teoretmeh.ru/test.htm
- 4. http://exir.ru/termeh/ploskaya_sistema_shodyaschisa_sil.htm
- 5. http://www.teoretmeh.ru/lect.html
- 6. http://window.edu.ru/resource/959/71959/files/samgtu_meh05.pdf
- 7. http://window.edu.ru/resource/956/71956/files/samgtu_meh02.pdf
- 8. http://teormeh.bstu.ru/shared/attachments/48666
- 9. http://standartgost.ru/