минобрнауки РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г. Шухова)

Директоринститута заочного обучения

Бучения / В В Нестеров

2015 Γ.

УТВЕРЖДАЮ

Директор энергетического института

А.В. Белоусов

20/5Γ.

РАБОЧАЯ ПРОГРАММА

дисциплины

ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ И ПОДСТАНЦИИ

направление подготовки

13.03.02 Электроэнергетика и электротехника

профиль подготовки

Электроснабжение

Квалификация

бакалавр

Форма обучения

Очно-заочная

Энергетический институт

Кафедра электроэнергетики и автоматики

Белгород – 2015

Рабочая программа составлена на основании требований:

- Федерального государственного образовательного стандарта высшего образования по направлению подготовки 13.03.02 «Электроэнергетика и электротехника» (уровень бакалавриата), утвержденного приказом Министерства образования и науки Российской Федерации № 955 от 3 сентября 2015 г;
- плана учебного процесса БГТУ им. В.Г. Шухова, введенного в действие в 2015 году.

Составители:		Д.А. Прасол
канд. техн. наук, доцент	AL.	А.Н. Семернин
Рабочая программа обсуждена на засед	дании кафедры электроэнерг	етики и автоматики
« <u>13</u> » <u>10</u> 2015 г., п	ротокол №	
Заведующий кафедрой: канд. техн. нау	ук, доцент	А.В. Белоусов
Рабочая программа одобрена методиче	еской комиссией энергетиче	ского института
« <u>15</u> » <u>10</u> 2015 г., п	ротокол №	
Председатель: канд. техн. наук, доцент	July July	А.Н. Семернин

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

	Формируемы	е компетенции			
№	Код компетенции	Компетенция	Требования к результатам обучения		
		Обще	профессиональные		
	Профессиональные				
1.	ПК-3	Способность	В результате освоения дисциплины обучающийся		
		принимать участие	должен:		
		в проектировании	Знать: основную нормативно-техническую		
		объектов	документацию по проектированию схем		
		профессиональной	распределительных устройств; современное		
		деятельности в	электрооборудование; основные требования при		
		соответствии с	проектировании схем распределительных устройств.		
		техническим	Уметь: пользоваться справочными материалами;		
		заданием и	анализировать техническое задание; выбирать и		
		нормативно-	проверять электрооборудование; выбирать и		
		технической	проектировать схемы распределительных устройств		
		документацией,	электроустановок.		
		соблюдая	Владеть:		
		различные	- основами проектирования электрических станций и		
		технические,	подстанций, схем распределительных устройств		
		энергоэффективные	электроустановок; навыками применения		
		и экологические	нормативно-технической документации;		
		требования	- навыками выбора и обоснования схем и		
	7774 5		электрооборудования.		
2.	ПК-5	Готовность	В результате освоения дисциплины обучающийся		
		определять	должен:		
		параметры	Знать: основные параметры схем электрических		
		оборудования	станций и подстанций, схем распределительных		
		объектов	устройств; основные параметры		
		профессиональной	электрооборудования электрических станций и		
		деятельности	подстанций.		
			Уметь: определять основные параметры схем		
			электрических станций и подстанций, схем		
			распределительных устройств; основные параметры электрооборудования электрических станций и		
			электроооорудования электрических станции и подстанций.		
			Владеть: навыками расчета и выбора по справочно-		
			технической литературе основных параметров схем электрических станций и подстанций, схем		
			распределительных устройств; основных параметров		
			электрооборудования электрических станций и		
			подстанций.		
<u> </u>			подотанции.		

3.	ПК-6	Способность	В результате освоения дисциплины обучающийся				
		рассчитывать	должен:				
		режимы работы	Знать:				
		объектов	- методы расчета режимов работы схем				
		профессиональной	распределительных устройств станций и подстанций;				
		деятельности	- основные параметры и методы расчета режимов				
			работы электрооборудования.				
			Уметь:				
			- составлять схемы замещения для расчета режимов				
			работы схем распределительных устройств;				
			- выполнять расчет основных параметров режимов				
			работы схем распределительных устройств и				
			электрооборудования;				
			- выполнять выбор и проверку электрооборудования;				
			- анализировать результаты расчета режимов работы				
			схем распределительных устройств и				
			электрооборудования.				
			Владеть:				
			- навыками преобразования схем распределительных				
			устройств;				
			- навыками расчета режимов работы схем				
			распределительных устройств, станций и				
			подстанций, основного и вспомогательного				
			электрооборудования.				

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

	пх дисциплин.
$N_{\underline{0}}$	Наименование дисциплины (модуля)
1.	Высшая математика
2.	Физика
3.	Начертательная геометрия и инженерная графика
4.	Общая энергетика
5.	Теоретические основы электротехники
6.	Экология
7.	Электрические аппараты
8.	Электрические машины
9.	Особенности профессиональной деятельности
10.	Электрические измерения
11.	Автоматизированные системы контроля и учена энергии
12.	Электромагнитные и электромеханические переходные процессы
13.	Электроснабжение
14.	Основы электропривода
15.	Управление электромеханическими системами

Содержание дисциплины служит основой для изучения следующих дисциплин:

$N_{\underline{0}}$	Наименование дисциплины (модуля)	
1.	Электроэнергетические системы и сети	
2.	Техника высоких напряжений	

3.	Электрофизические процессы в диэлектриках
4.	Эксплуатация систем электроснабжения
5.	Эксплуатация электрооборудования станций и подстанций
6.	Релейная защита и автоматика
7.	Коммутационные и защитные аппараты в системах электроснабжения
8.	Государственная итоговая аттестация

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 8 зач. единиц, 288 часов.

Вид учебной работы	Всего часов	Семестр № 8	Семестр № 9
Общая трудоемкость дисциплины, час	288	144	144
Контактная работа (аудиторные занятия), в т.ч.:	85	51	34
лекции	34	17	17
лабораторные	17	17	_
практические	34	17	17
Самостоятельная работа студентов, в том числе:	203	93	110
Курсовой проект	_	_	_
Курсовая работа	36	_	36
Расчетно-графическое задание	18	18	_
Индивидуальное домашнее задание	_	_	_
Другие виды самостоятельной работы	113	75	38
Форма промежуточная аттестация (зачет, экзамен)	36	Зачет	Экзамен (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Наименование тем, их содержание и объем Курс 4 Семестр 8

	Kype I Cemeerp 5					
			Объем на тематический раздел по видам учебной нагрузки, час			
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа	
1. O	ощие сведения о схемах распределительных устройств эле	ектроус	становс	К		
1.1.	Электрические схемы электрических станций и подстанций. Общие сведения. Основные требования, предъявляемые к схемам распределительных устройств электроустановок. Виды схем.	1	-	2	4	

				,	
1.2.	Нормативная документация, применяемая при проектировании и выборе главных схем станций и подстанций, схем распределительных устройств. Государственные стандарты, Правила, Нормы Руководящие документы. Номинальные напряжения.	1	l	-	3
1.3.	Классификация схем распределительных устройств. Классификационные признаки. Первая, вторая, третья и четвертая группы схем. Примеры схем, их применение.	1	2	2	6
2. Cx	емы распределительных устройств электроустановок				
2.1.	Схемы электрических соединений на стороне 6-10 кВ. Схема с одной рабочей системой сборных шин. Схема с одной рабочей секционированной выключателем системой сборных шин. Особенности схем, достоинства и недостатки.	1	2	2	6
2.2.	Схемы электрических соединений на стороне 6-10 кВ. Схема с двумя системами сборных шин. Схемы, применяемые на генераторном напряжении. Особенности схем, достоинства и недостатки.	1	1	1	4
2.3.	Схемы электрических соединений на стороне 35 кВ и выше. Упрощенные схемы: блочные схемы, схемы мостиков. Кольцевые схемы: схема треугольника, схема четырехугольника. Особенности схем, достоинства и недостатки.	1	_	_	3
2.4.	Схемы электрических соединений на стороне 35 кВ и выше. Схемы с одной рабочей и обходной системами сборных шин. Схемы с двумя рабочими и обходной системами сборных шин. Особенности схем, достоинства и недостатки.	1	2	2	6
2.5.	Схемы с двумя системами шин и тремя выключателями на две цепи. Схемы с двумя системами шин и четырьмя выключателями на три цепи. Особенности схем, достоинства и недостатки.	1	2	2	6
2.6.	Закрытые распределительные устройства (ЗРУ). Требования к конструкциям ЗРУ. Конструкции ЗРУ. Комплектные устройства высокого напряжения. Комплектные распределительные устройства внутренней и наружной установки. Открытые распределительные устройства (ОРУ). Требования к конструкциям ОРУ. Конструкции ОРУ.	1	_	_	3
	ектрические станции и подстанции, их главные схемы	ı		1	
3.1.	Структурные схемы электрических станций и подстанций. Выбор числа и мощности трансформаторов связи на теплоэлектроцентралях (ТЭЦ), конденсационных электростанциях (КЭС), гидроэлектростанциях (ГЭС) и атомных электростанциях (АЭС). Выбор числа и мощности трансформаторов на подстанции.	1	2	_	4
3.2.	Главные схемы КЭС. Основные требования к схемам мощных тепловых электроснанций. Схемы блоков генератор-трансформатор и генератортрансформатор-линия. Типовые схемы мощных КЭС.	1	2	2	6

3.3. Главные схемы АЭС. Особые требования к схемам АЭС. Схемы блоков АЭС и места присоединений рабочих трансформаторов собственных нужд. Присоединение резервных трансформаторов собственных нужд. Типовые схемы АЭС.	1	_	_	3
3.4. Главные схемы гидроэлектроснатнций и гидроаккумулирующих электростанций. Особенности ГЭС. Схемы электрических соединений ГЭС. Схемы электрических соединений ГАЭС.	1	_	_	3
3.5. Главные схемы теплоэлектроцентралей (ТЭЦ). Схемы ТЭЦ со сборными шинами генераторного напряжения. Схемы блочных ТЭЦ.	1	2	2	6
3.6. Главные схемы подстанций. Общие сведения. Схемы тупиковых и ответвительных подстанций. Схемы проходных подстанций. Схемы мощных узловых подстанций.	1	2	2	6
4. Собственные нужды электростанций и подстанций 4.1. Электроснабжение собственных нужд электростанций и подстанций. Общие сведения. Схемы электроснабжения собственных нужд теплоэлектростанций. Основные требования и источники электроснабжения. Схемы собственных нужд конденсационных электростанций (КЭС).	1	_	_	3
4.2. Схемы собственных нужд теплоэлектроцентралей (ТЭЦ). Схемы питания собственных нужд подстанций. Выбор трансформаторов собственных нужд. Постоянный оперативный ток. Переменный оперативный ток.	1	_	_	3
ВСЕГО	17	17	17	75

Курс <u>5</u> Семестр <u>9</u>

		Объ	ьем на	темати	ческий		
		раздел по видам учебной					
			нагрузки, час				
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа		
5. O	сновное оборудование электрических станций и подстанці	ий					
5.1.	Силовые трансформаторы и автотрансформаторы.						
	Типы трансформаторов и их параметры. Схемы и						
	группы соединений обмоток трансформаторов.	1	_	_	2		
	Элементы конструкции силовых трансформаторов.						
	Системы охлаждения силовых трансформаторов.						
5.2.	Нагрузочная способность силовых трансформаторов.						
	Особенности конструкции и режимы работы						
	автотрансформаторов. Регулирование напряжения	2	6	_	8		
	трансформаторов. Выбор трансформаторов и						
	автотрансформаторов по нагрузочной способности.						

6. Короткие замыкания в схемах электростанций и подстанций	í						
6.1. Методы ограничения токов короткого замыкания (КЗ). Координация токов КЗ в энергосистемах. Токоограничивающие реакторы. Выбор реакторов. Расчетные условия для проверки электрических аппаратов и токоведущих частей по режиму короткого замыкания.	2	2	_	4			
7. Электрические аппараты и токоведущие части							
7.1. Расчетные условия для выбора проводников и аппаратов по продолжительным режимам работы. Шины распределительных устройств и силовые кабели. Типы проводников, применяемых с основных электрических цепях. Выбор жестких шин. Выбор гибких шин и токопроводов. Выбор кабелей.	2	3	_	5			
7.2. Гашение электрической дуги. Условия возникновения и горения дуги. Гашение дуги. Основные способы гашения дуги в аппаратах до 1 кВ. Основные способы гашения дуги в аппаратах выше 1 кВ. Коммутационные аппараты выше 1 кВ. Разъединители, отделители, короткозамыкатели. Общие сведения. Разъединители для внутренней установки. Разъединители для наружной установки. Короткозамыкатели и отделители. Выключатели нагрузки. Выбор разъединителей.	2	_	_	2			
7.3. Плавкие предохранители выше 1 кВ. Предохранители с наполнителем. Предохранители с автогазовым гашением. Выбор предохранителей. Выключатели высокого напряжения. Общие сведения. Масляные баковые выключатели. Маломасляные выключатели. Воздушные выключатели.	2	_	_	2			
7.4. Выключатели высокого напряжения. Электромагнитные выключатели. Вакуумные выключатели. Элегазовые выключатели. Выбор выключателей.	2	2	_	5			
7.5. Измерительные трансформаторы тока. Общие сведения. Конструкции трансформаторов тока. Выбор измерительных трансформаторов тока.	2	2	_	5			
7.6. Измерительные трансформаторы напряжения. Общие сведения и схемы соединения. Конструкции трансформаторов напряжения. Выбор измерительных трансформаторов напряжения.	2	2	-	5			
ВСЕГО	17	17	_	38			

4.2. Содержание практических (семинарских) занятий

		актических (семинарских) заня		К-во
№	Наименование раздела	Тема практического (семинарского)	К-во	часов
Π/Π	дисциплины	занятия	часов	CPC
		семестр №8		
1.	Общие сведения о схемах распределительных устройств электроустановок. Электрические станции и подстанции, их главные схемы.	Структурные схемы электрических станций и подстанций. Выбор, обоснование и составление структурных схем.	2	2
2.	Электрические станции и подстанции, их главные схемы. Схемы распределительных устройств электроустановок.	Типовые схемы электрических соединений распределительных устройств электростанций. Схемы, применяемые на стороне 6-10 кВ электростанций. Схемы, применяемые на стороне 35-750 кВ электростанций.	2	2
3.	Электрические станции и подстанции, их главные схемы. Схемы распределительных устройств электроустановок.	Типовые схемы электрических соединений распределительных устройств мощных подстанций. Типовые схемы подстанций на стороне высшего напряжения.	2	2
4.	Электрические станции и подстанции, их главные схемы. Схемы распределительных устройств электроустановок.	Типовые схемы электрических соединений распределительных устройств мощных подстанций. Типовые схемы подстанций на стороне низшего напряжения.	2	2
5.	Электрические станции и подстанции, их главные схемы. Схемы распределительных устройств электроустановок.	Разработка структурной схемы теплоэлектроцентрали смешанного типа.	2	2
6.	Электрические станции и подстанции, их главные схемы. Схемы распределительных устройств электроустановок.	Разработка структурной схемы теплоэлектроцентрали блочного типа.	2	2
7.	Электрические станции и подстанции, их главные схемы. Схемы распределительных устройств электроустановок.	Разработка структурной схемы конденсационной электростанции блочного типа.	2	2
8.	Электрические станции и подстанции, их главные схемы. Схемы распределительных устройств электроустановок.	Разработка структурной схемы узловой подстанции.	2	2
9.	Электрические станции и подстанции, их главные схемы. Схемы распределительных устройств электроустановок.	Составление структурной схемы, однолинейной принципиальной схемы учебного полигона.	1	1
		ИТОГО:	17	17

		семестр №9		
1.	Основное оборудование электрических станций и подстанций.	Определение допустимости систематической нагрузки трансформатора. Определение допустимой аварийной перегрузки.	2	2
2.	Основное оборудование электрических станций и подстанций.	Выбор мощности автотрансформатора, включенного в блок с генератором.	2	2
3.	Основное оборудование электрических станций и подстанций.	Выбор числа и мощности трансформаторов на узловой подстанции.	2	2
4.	Короткие замыкания в схемах электростанций и подстанций.	Выбор токоограничивающих реакторов. Проверка реакторов на термическую и электродинамическую стойкость.	2	2
5.	Электрические аппараты и токоведущие части.	Выбор и проверка токоведущих частей (ошиновки). Выбор ошиновки в цепях генератора и сборных шин 10 кВ электростанции.	3	3
6.	Электрические аппараты и токоведущие части.	Выбор и проверка выключатей и разъединителей.	2	2
7.	Электрические аппараты и токоведущие части.	Выбор и проверка трансформаторов тока.	2	2
8.	Электрические аппараты и токоведущие части.	Выбор и проверка измерительных трансформаторов напряжения.	2	2
		ИТОГО: ВСЕГО:	17 34	17 34

4.3. Содержание лабораторных занятий

№ п/п	Наименование раздела дисциплины	Тема лабораторного занятия	К-во часов	К-во часов СРС				
	семестр №8							
1.	Общие сведения о схемах распределительных устройств электроустановок	Техника безопасности, правила работы в лаборатории и на полигоне. Правила безопасной работы с измерительными приборами и оборудованием. Обозначения условные графические и буквенный код элементов электрических схем.	3	3				
2.	Общие сведения о схемах распределительных устройств электроустановок. Общие сведения об электрических станциях и подстанциях, их главные схемы. Основное электрооборудование электрических станций и подстанций	Основное оборудование электрических станций и подстанций. Производство электрической энергии на электрических станциях, их главные схемы и схемы распределительных устройств.	3	3				

3.	Общие сведения о схемах распределительных устройств электроустановок. Электрические станции и подстанции, их главные схемы. Схемы распределительных устройств электроустановок.	Изучение электрооборудования и схемы главных электрических соединений учебного полигона.	3	3
4.	Схемы распределительных устройств электроустановок. Электрические аппараты и токоведущие части.	Коммутационные и защитные аппараты высокого напряжения. Выключатели высокого напряжения.	3	3
5.	Схемы распределительных устройств электроустановок. Электрические аппараты и токоведущие части.	Коммутационные и защитные аппараты высокого напряжения. Разъединители.	2	2
6.	Схемы распределительных устройств электроустановок. Электрические аппараты и токоведущие части.	Измерительные трансформаторы тока. Измерительные трансформаторы напряжения.	3	3
		ИТОГО:	17	17

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов (типовых заданий)

	5.1. перечень контрольных вопросов (типовых задании)										
No	Наименование	Содержание вопросов (типовых заданий)									
п/п	раздела дисциплины										
1.	Общие сведения о	1. Электрические схемы электрических станций и подстанций.									
	схемах	Общие сведения.									
	распределительных	2. Основные требования, предъявляемые к схемам									
	устройств	распределительных устройств электроустановок.									
	электроустановок	3. Общие сведения о схемах электроустановок. Виды схем и их									
		назначение.									
		4. Электрические схемы электрических станций и подстанций.									
		Общие сведения.									
		5. Основные требования, предъявляемые к схемам									
		распределительных устройств электроустановок. Виды схем и их									
		назначение. Условные графические обозначения и буквенный									
		код элементорв электрических схем.									
		6. Нормативная документация, применяемая при									
		проектировании и выборе главных схем электрических станций и									
		подстанций, схем распределительных устройств.									
		Государственные стандарты, Правила, Нормы Руководящие									
		документы. Номинальные напряжения.									
		7. Классификация схем распределительных устройств.									
		Классификационные признаки. Первая группа схем. Примеры									
		схем, их применение.									
		8. Классификация схем распределительных устройств. Вторая									
		группа схем. Примеры схем, их применение.									
		9. Классификация схем распределительных устройств. Третья									
		группа схем. Примеры схем, их применение.									
		10. Классификация схем распределительных устройств.									

		Четвертая группа схем. Примеры схем, их применение.							
2.	Схемы	11. Схемы электрических соединений на стороне 6-10 кВ. Схема							
	распределительных	с одной системой сборных шин.							
	устройств	12. Схемы электрических соединений на стороне 6-10 кВ. Схема							
	электроустановок	с двумя системами сборных шин.							
		13. Схемы электрических соединений на стороне 6-10 кВ. Схемы,							
		применяемые на генераторном напряжении.							
		14. Схемы электрических соединений на стороне 35 кВ и выше.							
		Упрощенные схемы РУ.							
		15. Схемы электрических соединений на стороне 35 кВ и выше.							
		Кольцевые схемы.							
		16. Схемы электрических соединений на стороне 35 кВ и выше. Схемы с одной рабочей и обходной системами сборных шин.							
		17. Схемы электрических соединений на стороне 35 кВ и выше.							
		Схемы с двумя рабочими и обходной системами сборных шин.							
		18. Схемы электрических соединений на стороне 35 кВ и выше.							
		Схемы с двумя системами шин и тремя выключателями на две							
		цепи.							
		19. Схемы электрических соединений на стороне 35 кВ и выше.							
		Схемы с двумя системами шин и четырьмя выключателями на							
		три цепи.							
		20. Закрытые распределительные устройства. Требования к							
		конструкциям ЗРУ. Конструкции ЗРУ.							
		21. Комплектные устройства высокого напряжения.							
		Комплектные распределительные устройства внутренней и							
		наружной установки.							
		22. Открытые распределительные устройства. Требования к конструкциям ОРУ. Конструкции ОРУ.							
3.	Электрические	23. Тепловые конденсационные электрические станции.							
J.	станции и	Технологический процесс производства электроэнергии на КЭС.							
	подстанции, их	Особенности, достоинства, недостатки.							
	главные схемы	24. Теплофикационные станции (теплоэлектроцентрали).							
		Технологический процесс производства электроэнергии на ТЭЦ.							
		Особенности, достоинства, недостатки.							
		25. Атомные электрические станции. Технологический процесс							
		производства электроэнергии на АЭС. Особенности,							
		достоинства, недостатки.							
		26. Гидроэлектростанции. Технологический процесс							
		производства электроэнергии на ГЭС. Особенности, достоинства, недостатки.							
		27. Гидроаккумулирующие электростанции. Технологический							
		процесс производства электроэнергии на ГАЭС. Особенности,							
		достоинства, недостатки.							
		28. Электрические подстанции. Технологический процесс							
		распределения и передачи электроэнергии на подстанциях.							
		Особенности, достоинства, недостатки.							
		29. Структурные схемы электрических станций и подстанций.							
		Структурные схемы теплофикационных станций							
		(теплоэлектроцентралей).							
		30. Структурные схемы электрических станций и подстанций.							
		Структурные схемы атомных электрических станций,							
		гидроэлектростанций и конденсационных электрических							
		станций.							
		31. Структурные схемы электрических станций и подстанций.							

	T	
		Структурные схемы подстанций.
		32. Главные схемы конденсационных электрических станций.
		33. Главные схемы атомных электрических станций.
		34. Главные схемы теплофикационных станций
		(теплоэлектроцентралей).
		35. Главные схемы гидроэлектростанций и
		гидроаккумулирующих электростанций.
		36. Главные схемы подстанций.
		37. Выбор числа и мощности трансформаторов связи на
		теплофикационных станциях (теплоэлектроцентралях).
		38. Выбор числа и мощности трансформаторов связи на атомных
		электрических станциях, гидроэлектростанциях и
		конденсационных электрических станциях.
		39. Выбор числа и мощности трансформаторов на подстанциях.
4.	Собственные нужды	40. Электроснабжение собственных нужд электростанций и
	электростанций и	подстанций. Общие сведения.
	подстанций	41. Схемы электроснабжения собственных нужд
		конденсационных электрических станций.
		42. Схемы электроснабжения собственных нужд
		теплофикационных станциий (теплоэлектроцентралей).
		43. Схемы электроснабжения собственных нужд подстанций.
5.	Основное	44. Синхронные генераторы. Типы синхронных генераторов, их
	электрооборудование	технические характеристики и конструкции.
	электрических	45. Системы охлаждения синхронных генераторов.
	станций и подстанций	46. Силовые трансформаторы и автотрансформаторы. Типы
		трансформаторов и их параметры.
		47. Схемы и группы соединений обмоток трансформаторов.
		Элементы конструкции силовых трансформаторов.
		48. Системы охлаждения силовых трансформаторов.
		49. Нагрузочная способность силовых трансформаторов.
		50. Особенности конструкции и режимы работы
		автотрансформаторов.
		51. Регулирование напряжения трансформаторов.
		52. Выбор трансформаторов и автотрансформаторов по
	Y.0.	нагрузочной способности.
6.	Короткие замыкания	53. Электродинамическое действие токов короткого замыкания.
	в схемах	54. Термическое действие токов короткого замыкания.
	электростанций и	55. Методы ограничения токов короткого замыкания.
	подстанций	56. Токоограничивающие реакторы. Выбор реакторов.
		57. Расчетные условия для проверки электрических аппаратов и
		токоведущих частей по режиму короткого замыкания.

	I	T
7.	Электрические	58. Расчетные условия для выбора проводников и аппаратов по
	аппараты и	продолжительным режимам работы.
	токоведущие части	59. Шины распределительных устройств и силовые кабели. Типы
		проводников, применяемых в основных электрических цепях.
		60. Выбор жестких шин.
		61. Выбор гибких шин и токопроводов.
		62. Выбор кабелей.
		63. Гашение электрической дуги. Условия возникновения и
		горения дуги.
		64. Гашение дуги. Основные способы гашения дуги в аппаратах
		до 1 кВ.
		65. Гашение дуги. Основные способы гашения дуги в аппаратах
		выше 1 кВ.
		66. Коммутационные аппараты выше 1 кВ. Разъединители,
		отделители, короткозамыкатели. Общие сведения.
		67. Разъединители для внутренней установки. Разновидности,
		конструктивные особенности, назначение и применение,
		достоинства и недостатки, примеры.
		68. Разъединители для наружной установки. Разновидности,
		конструктивные особенности, назначение и применение,
		достоинства и недостатки, примеры.
		69. Короткозамыкатели и отделители.
		70. Выключатели нагрузки.
		71. Выбор разъединителей.
7.	Электрические	72. Плавкие предохранители выше 1 кВ. Предохранители с
	аппараты и	наполнителем.
	токоведущие части	73. Плавкие предохранители выше 1 кВ. Предохранители с
		автогазовым гашением.
		74. Выбор предохранителей.
		75. Выключатели высокого напряжения. Общие сведения.
		76. Масляные баковые выключатели. Особенности конструкции,
		гашение дуги, назначение и применение, достоинства и
		недостатки, примеры.
		77. Маломасляные выключатели. Особенности конструкции,
		гашение дуги, назначение и применение, достоинства и
		недостатки, примеры.
		78. Воздушные выключатели. Особенности конструкции,
		гашение дуги, назначение и применение, достоинства и
		недостатки, примеры.
		79. Электромагнитные выключатели. Особенности конструкции,
		гашение дуги, назначение и применение, достоинства и
		недостатки, примеры.
		80. Вакуумные выключатели. Особенности конструкции,
		гашение дуги, назначение и применение, достоинства и
		недостатки, примеры. 81. Элегазовые выключатели. Особенности конструкции,
		гашение дуги, назначение и применение, достоинства и
		недостатки, примеры. 82. Выбор выключателей.
		83. Измерительные трансформаторы тока. Общие сведения.
		84. Конструкции трансформаторов тока.
		85. Измерительные трансформаторы напряжения. Общие
		сведения и схемы соединения.
		86. Конструкции трансформаторов напряжения.
	l	оо. конструкции трансформаторов напряжения.

	87. Выбор	измерительных	трансформаторов.	Выбор				
	1 1 1	трансформаторов тока.						
	88. Выбор	измерительных	трансформаторов.	Выбор				
	трансформаторов напряжения.							

5.2. Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем.

предусмотрена Учебным курсовая работа, посвященная планом проектированию электрической части узловой подстанции. Задание сформировано с целью приобретения студентами способностей и навыков в проектировании схем главных электрических соединений электрических станций и подстанций в соответствии с техническим заданием и нормативно-технической документацией, энергоэффективные экологические соблюдая технические, различные И требования.

Тема курсовой работы: «Проектирование электрической части узловой подстанции».

Спроектировать электрическую часть узловой подстанции на основе исходных данных, приведенных в таблице 1.

В курсовой работе должны быть решены следующие задачи (содержание пояснительной записки):

- 1) выбор числа и мощности силовых трансформаторов (автотрансформаторов);
 - 2) выбор числа питающих ВЛ, выбор сечений проводов питающих ВЛ;
- 3) разработка и обоснование принципиальной электрической схемы подстанции;
- 4) расчёт токов короткого замыкания в объёме, необходимом для выбора и проверки электрооборудования;
- 5) выбор и проверка основного электрооборудования (выключателей, разъединителей, измерительных трансформаторов тока и напряжения, проходных и опорных изоляторов, нелинейных ограничителей перенапряжения, гибкой ошиновки РУ и жестких шин).

В графической части работы (выполняется на двух листах формата А3 или более) показывается принципиальная однолинейная схема коммутации подстанции с указанием марок выбранного оборудования (лист 1) и план ОРУ ВН (или СН) и разрезы по ячейкам ОРУ ВН (СН) (лист 2).

Таблица 1 Пример исходных данных для проектирования узловой подстанции

Вариант	1	2	3	4	5	6	7	8	9	10
U _{вн} , кВ	220	330	110	220	330	220	110	220	330	220
U _{CH} , кВ	110	110	35	110	220	110	35	35	110	35
U _{нн} , кВ	6	6	6	10	6	10	10	6	10	10
S _{K3} , MBA	1800	5000	900	2200	4500	6000	1000	1500	4200	2100
Расстояние до системы L, км	80	105	40	70	120	75	45	90	140	100
Число отходящих линий от	3	2	3	1	2	1	2	2	1	1
РУ ВН пвн										
Мощность транзита через РУ	70	100	43	80	110	70	80	100	50	66

ВН Ѕтранз, МВА										
Число отходящих линий от	7	7	5	6	2	7	5	8	3	4
РУ СН пСН										
Мощность нагрузки на	60	90	90	30	96	120	70	80	85	40
среднем напряжении S_{CH} ,										
MBA										
Число отходящих линий от	8	10	12	6	16	7	8	10	16	10
РУ НН пнн										
Мощность нагрузки на	12	14	16	6	24	14	10	15	30	13
низком напряжении S _{HH} ,										
MBA										

Примечание: доля нагрузки 3 категории по надёжности электроснабжения на стороне CH составляет 20%, а на стороне HH - 30%; принять выдержку времени срабатывания релейной защиты, для обеспечения селективности действия, равной 0,5 секунд.

5.3. Перечень индивидуальных домашних заданий, расчетно-графических заданий.

Учебным планом предусмотрено расчетно-графическое задание, посвященное проектированию электрической части электростанции. Задание сформировано с целью приобретения студентами способностей выбора, обоснования, анализа и моделирования структурных схем электрических станций, а также электрических схем распределительных устройств.

В расчетно-графическом задании должны быть решены следующие задачи (содержание отчета):

- 1) Генерирование электрической энергии на электростанциях. Изобразить и описать схемы производства электрической энергии на электростанции, указанной в варианте. Указать особенности, достоинства и недостатки.
- 2) Выбрать, обосновать, изобразить и проанализировать структурную схему и схему главных электрических соединений электростанции в соответствие с вариантом задания, представленным в таблице 2. Описать особенности схемы, возможные режимы работы, достоинства и недостатки.

Таблица 2 Пример исходных данных для выполнения расчетно-графического задания

											, ,
	1	2	3	4	5	6	7	8	9	0	Цифра шифра студента
Число агрегатов	3	3	4	5	2	3	4	5	2	3	Предпослед няя
Тип станции	ДЄТ	EТ Ц	АЭС	АЭС	ГЭС	ГЭС	КЭС	КЭС	ГА ЭС	ВЭС	Последняя
				Стру	ктурная	схема Т	ДΕ				
	Блочная	Смешанн ая	сГРУ	Блочная	Смешанн ая	с ГРУ	Блочная	Смешанн ая	сГРУ	Блочная	Третья от конца
Число отходящи х линий	16	8	10	9	12	14	6	5	12	16	Последняя

от ГРУ											
Связь ТЭЦ с системой/нагрузкой											
Напряже ние, кВ	35	110	220/11 0	110/35	220/1 10	35	110	110	35	220/ 35	Последняя
Число воздушн ых линий	2	4	2	3	2	4	2	3	5	2	Предпослед няя
Связь КЭС, ГЭС, ГАЭС с системой/нагрузкой											
Напряже ние, кВ	220/11	110	110	330/22	330/2 20	110	220	220/1 10	330	220	Третья от конца
Число воздушн ых линий	3	4	3	2	3	2	4	2	4	3	Предпослед няя
			Свя	зь ВЭС с	системо	й или по	требите.	пем			
Напряже ние, кВ	35	110	220	35	110	220	35	110	220	35	Предпослед няя
Число линий	6	4	8	4	5	4	4	5	7	6	Последняя
Связь АЭС с системой/нагрузкой											
Напряже ние, кВ	500/22	330	750/33 0	1150	330	500/2 20	750/3 30	500	750	1150	Третья от конца
Число воздушн ых линий	6	8	9	7	6	5	6	9	6	3	Предпослед няя

5.4. Перечень контрольных работ.

Контрольные работы учебным планом не предусмотрены.

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

- 1. Электрооборудование электрических станций и подстанций: учебник / Л.Д. Рожкова, Л.К. Карнеева, Т.В. Чиркова. Москва: Академия, 2004. 447 с.
- 2. Расчет коротких замыканий и выбор электрооборудования: учеб. пособие / И.П. Крючков [и др.]; под ред. И.П. Крючкова, В. А. Старшинова. 2-е изд., стер. Москва: Академия, 2006. 412 с.
- 3. Схемы и подстанции электроснабжения: справочник: учеб. пособие / Г. Н. Ополева. Москва: ФОРУМ, 2006. 479 с.
- 4. Основы современной энергетики: учебник для вузов: в 2 т. / под общей редакцией чл.-корр. РАН Е.В. Аметистова 4-е изд., перераб и доп. М.: Издательский дом МЭИ, 2008. Том 2. Современная электроэнергетика / Под ред. профессоров А.П. Бурмана и В.А. Строева 632 с.
- 5. Проектирование схем электроустановок [Электронный ресурс]: учеб. пособие для студентов вузов, обучающихся по всем специальностям направления подготовки 650900 "Электроэнергетика" / Ю. Н. Балаков, М. Ш. Мисриханов, А. В. Шунтов. 3-е изд., стер. Электрон. текстовые дан. Москва: Издательский дом МЭИ, 2009. URL: https://elib.bstu.ru/Reader/Book/8100.

6.2. Перечень дополнительной литературы

- 1. Тепловые и атомные электрические станции: учебник / Л. С. Стерман, В. М. Лавыгин, С. Г. Тишин. 3-е изд., перераб. Москва: МЭИ, 2004. 423 с.
- 2. Балаков Ю.Н., Мисриханов М.Ш., Шунтов А.В. Проектирование схем электроустановок: Учебное пособие для вузов. М.: Издательство МЭИ, 2004. 287 с.

- 3. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования / Рос. акцион. общ-во энергетики и электрификации "ЕЭС России"; ред. Б. Н. Неклепаев. Москва: НЦ ЭНАС, 2004. 150 с.
- 4. Электрическая часть станций и подстанций: учебник / А. А. Васильев, И. П. Крючков, Е. Ф. Наяшкова [и др.]. 2-е изд., перераб. и доп. Москва : Энергоатомиздат, 1990. 576 с.
- 5. Электрооборудование электрических станций и подстанций: учебник / Л. Д. Рожкова, Л. К. Карнеева, Т. В. Чиркова. 5-е изд., стер. Москва : Академия, 2008. 448 с.
- 6. Электрические станции и подстанции [Текст] / В. В. Афонин, К. А. Набатов. 1. Тамбов: Издательство ФГБОУ ВПО «ТГТУ», 2015. 91 с. URL: http://biblioclub.ru/index.php?page=book&id=444619.
- 7. Почаевец В.С. Электрические подстанции [Электронный ресурс]: учебник/ Почаевец В.С. Электрон. текстовые данные.— М.: Учебно-методический центр по образованию на железнодорожном транспорте, 2012. 491 с. Режим доступа: http://www.iprbookshop.ru/16274. ЭБС «IPRbooks».
- 8. Электрические станции и сети [Электронный ресурс]: офиц. тексты по сост. на 01.03.2006 г. Москва: ЭНАС, 2013. 720 с. URL: http://e.lanbook.com/books/element.php?pl1_id=38575.
- 9. Электрическая часть атомных электростанций: учеб. пособие / В.П. Васин, В.А. Старшинов. Москва: Издательство МЭИ, 2005. 206 с.
- 10. Балдин М.Н. Основное оборудование электрических сетей: справочник [Электронный ресурс] : справочник / М.Н. Балдин, И.Г. Карапетян. Электрон. дан. М.: ЭНАС, 2014. 208 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=60778.

6.3. Перечень интернет ресурсов

- 1. Основы современной энергетики [Электронный ресурс]: в 2-х т.: учеб. для студентов вузов, обучающихся по направлениям подготовки "Теполоэнергетика", "Электроэнертегика", "Энергомашиностроение" / общ. ред. Е. В. Аметистов. 5-е изд., стер. Электрон. текстовые дан. Москва: Издательский дом МЭИ, 2010. Т. 2: Современная электроэнергетика / ред.: А.П. Бурман, В. А. Строев. 2010. URL: https://elib.bstu.ru/Reader/Book/8099 (20.11.2017).
- 2. Рекомендации по технологическому проектированию подстанций переменного тока с высшим напряжением 35-750 кВ [Электронный ресурс]/— Электрон. текстовые данные.— М.: Издательский дом ЭНЕРГИЯ, 2012.— 108 с.— URL: http://www.iprbookshop.ru/22738.—ЭБС «IPRbooks» (20.11.2017).
- 3. Атомные электрические станции [Электронный ресурс]: курсовое проектирование. Учебное пособие / Седнин А. В. Минск : Вышэйшая школа, 2010. 150 с. Режим доступа: http://www.iprbookshop.ru/20054.
- 4. РД 153-34.0-20.527–98. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования [Электронный ресурс]: учебное пособие. Электрон. дан. М.: ЭНАС, 2013. 144 с. URL: http://e.lanbook.com/books/element.php?pl1_id=38586 (20.11.2017).
- 5. Инструкция по переключениям в электроустановках. Утверждена Минэнерго России 30.06.2003 г. [Электронный ресурс]. Электрон. дан. М.: ЭНАС, 2013. 96 с. URL: http://e.lanbook.com/books/element.php?pl1_id=38583 (20.11.2017).

- 6. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения [Электронный ресурс]/ Электрон. текстовые данные.— М.: Издательский дом ЭНЕРГИЯ, 2012.— 32 с. URL: http://www.iprbookshop.ru/22778. ЭБС «IPRbooks» (20.11.2017).
- 7. ПУЭ. изл. 7-e: общие правила; передача электроэнергии; распределительные устройства подстанции; электрическое освещение; И электрооборудование специальных установок [Электронный ресурс]: — Электрон. ЭНАС, M. 2013. 560 URL: c. http://e.lanbook.com/books/element.php?pl1_id=38572 (24.12.2017).
- 8. Инструкция по переключениям в электроустановках. Утверждена Минэнерго России 30.06.2003 г. [Электронный ресурс]: Электрон. дан. М. : ЭНАС, 2013. 96 с. URL: http://e.lanbook.com/books/element.php?pl1_id=38583 (24.12.2017).
- 9. Гологорский, Е.Г. Справочник по строительству и реконструкции линий электропередачи напряжением 0,4-750 кВ [Электронный ресурс]: справочник. Электрон. дан. М.: ЭНАС, 2007. 557 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=38547.
- 10. Справочно-поисковая система «КонсультантПлюс» [Электронный ресурс]. URL: http://www.consultant.ru/ (24.12.2017).
- 11. Ежемесячная газета «Энергетика и промышленность России» [Электронный ресурс]. URL: http://www.eprussia.ru/ (28.12.2017).
- 12. Бесплатная библиотека энергетика [Электронный ресурс]. URL: https://www.eprussia.ru/lib/ (28.12.2017).

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Лекционные занятия — лекционные аудитории главного корпуса БГТУ им. В.Г. Шухова Гк031, Гк032, Гк033, оснащенные презентационной техникой, комплект презентационных материалов: «Схемы и внешний вид электрических подстанций Белгородской области»; «Примеры схем главных электрических соединений крупных электростанций Р Φ ».

Практические занятия — учебные аудитории кафедры «Электроэнергетика и автоматика» (лаборатория электроэнергетических систем M223).

Лабораторные занятия – лаборатория электроэнергетических систем М223; электрооборудования М219; электропривода И электрических аппаратов и электроснабжения М216; Учебный полигон кафедры «Электроэнергетика Ветро-солнечная автоматика»; станция кафедры И «Электроэнергетика Учебные автоматика». лабораторные стенлы И «Электроснабжение промышленных предприятий» НТЦ-10.00.000 НТП «Центр».

Учебный полигон: однотрансформаторная подстанция с уровнями напряжения 35 и 10 кВ. Питание полигона — одноцепная линиея 35 кВ (сталеалюминевый провод AC-50/8, металлическая опора У 35-1).

Изоляторы лини 35 кВ – полимерные изоляторы ЛК 70/35-III.

Ввод в ОРУ 35 кВ – гибкая ошиновка, провод AC-50/8.

Фарфоровые опорные изоляторы ИОС-500-01 УХЛ.

Разъединитель горизонтально-поворотного типа РНДЗ-2-35 кВ с двумя

комплектами заземляющих ножей с ламелями, с механических приводом.

Масляный выключатель ВМ-35 кВ, на силу тока 600 A, с отключающей способностью 400 МВA, с электромеханическим приводом постоянного тока типа ШПЭ-11.

Разрядники РВС - 35кВ; с максимальным рабочим напряжением $U_p = 40,5$ кВ. Гибкая ошиновка ОРУ 35 кВ – провод АС-50/8.

Понижающий силовой масляный трансформатор FTDO 1250/35 мощностью 1250 кВА.

 ${\rm KPYH}$ - 10 кВ: комплектное распределительное устройство наружной установки, ${\rm U_{{\scriptscriptstyle HOM}}}=10~{\rm kB}.$

Ячейки КРУН - 10 кВ:

1) Ячейка ввода 10 кВ. Опорно-проходные изоляторы ИПТ-10 кВ (фарфоровые). Разъединитель РВ3-10-630 с двумя заземляющими ножами и блокировками от непреднамеренного включения. На фазах А и С — измерительные трансформаторы тока для работы средств РЗ и А.

Масляный выключатель ВПМ-10-20-630 У2 с управляемым приводом типа ПП-67.

- 2) Ячейка ТСН. Ввод в виде гибкой ошиновкой проводом AC-50/8 через опорно-проходные изоляторы ИПТ-10 кВ. Разъединитель PB3-10 кВ. Плавкие предохранители типа ПКН-10 кВ. Трансформатор собственных нужд: ТМ-63, $S_{\text{ном}}$ = 63 кВА.
- 3) Ячейка отходящей линии 10 кВ. Ввод выполнен жесткими шинами прямоугольного сечения 50×6 мм. Выкатной элемент (тележка) производства компании «Самара электрощит». Разъединитель РВ3-10-630, вакуумный выключатель ВВ/ТЕL «Таврида электрик» ВВ/ТЕL-10-12,5/630 У2. Тип блока управления ВВ/ТЕL-10. Приборы контроля и учета потребляемой электроэнергии, терминал релейной защиты «Сириус-2-Л».
- 4) Ячейка трансформатора напряжения. Измерительный трансформатор напряжения НАМИ-10, Разъединитель РВ3-10, плавкие предохранители ПН-10. Схемы соединения обмоток трансформатора напряжения: звезда звезда разомкнутый треугольник.

Самостоятельная работа — специализированный компьютерный класс M424, оснащенный презентационной техникой (проектор Acer Projector P1165) и персональными компьютерами (Intel Core i3-8100 CPU 3.60 ГГц/ Gigabyte Z370 HD3/ RAM 8192 M6/ HDD 1 T6/ NVIDIA GeForce GTX 750/ AOC 23,8"/ ASUS DRW-24D5MT/ Wi-Fi/ LAN100Mb/ CyberPower BS850E), подключенными к локальной сети университета с доступом в интернет.

Для самостоятельной работы (оформление отчетов по лабораторным расчетно-графической оформление работам. работы) используется предустановленное лицензионное программное обеспечение Microsoft Windows 10 Корпоративная (Enterprice) (№ дог. E04002C51M), Microsoft Office Professional Plus (№ дог. E04002C51M), Microsoft Visio **Professional** 2013 E04002C51M), Autodesk AutoCAD 2017 — Русский (Russian) (№ дог. 7053026340), PTC Mathcad Prime Express (распространяется свободно).

Самостоятельная работа студентов обеспечивается участием в программах Microsoft Imagine (№ дог. 52031/MOC 2793) и Office 365 (№ дог. E04002C51M) с возможностью бесплатной загрузки программного обеспечения Microsoft.

Рабочая программа без изменений утверждена на 2016/201	7учебный год.
Протокол № заседания кафедры от « » 0 &	20 <u></u> ν.
Заведующий кафедрой ЭиА	А.В. Белоусов
Директор института	А.В. Белоусов

Рабочая программа утверждена на 2017 /2018 учебный год со следующими изменениями, дополнениями

Перечень изменений и дополнений в п.6.3 Электронные ресурсы:

- 1. Основы современной энергетики [Электронный ресурс]: в 2-х т.: учеб. для студентов вузов, обучающихся по направлениям подготовки "Теполоэнергетика", "Электроэнертегика", "Энергомашиностроение" / общ. ред. Е. В. Аметистов. 5-е изд., стер. Электрон. текстовые дан. Москва: Издательский дом МЭИ, 2010. Т. 2: Современная электроэнергетика / ред.: А.П. Бурман, В. А. Строев. 2010. URL: https://elib.bstu.ru/Reader/Book/8099 (20.11.2017).
- 2. Рекомендации по технологическому проектированию подстанций переменного тока с высшим напряжением 35-750 кВ [Электронный ресурс]/ Электрон. текстовые данные.— М.: Издательский дом ЭНЕРГИЯ, 2012.— 108 с. URL: http://www.iprbookshop.ru/22738. ЭБС «IPRbooks» (20.11.2017).
- 3. РД 153-34.0-20.527—98. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования [Электронный ресурс]: учебное пособие. Электрон. дан. М.: ЭНАС, 2013. 144 с. URL: http://e.lanbook.com/books/element.php?pl1_id=38586 (20.11.2017).
- 4. Инструкция по переключениям в электроустановках. Утверждена Минэнерго России 30.06.2003 г. [Электронный ресурс]. Электрон. дан. М.: ЭНАС, 2013. 96 с. URL: http://e.lanbook.com/books/element.php?pl1_id=38583 (20.11.2017).
- 5. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения [Электронный ресурс]/ Электрон. текстовые данные.— М.: Издательский дом ЭНЕРГИЯ, 2012.— 32 с. URL: http://www.iprbookshop.ru/22778. ЭБС «IPRbooks» (20.11.2017).
- 6. ПУЭ, 7-e: общие правила; передача изд. электроэнергии; подстанции; распределительные устройства И электрическое освещение; электрооборудование специальных установок [Электронный ресурс]: — Электрон. дан. M. ЭНАС, 2013. 560 C. URL: http://e.lanbook.com/books/element.php?pl1 id=38572 (24.12.2017).
- 7. Инструкция по переключениям в электроустановках. Утверждена Минэнерго России 30.06.2003 г. [Электронный ресурс]: Электрон. дан. М.: ЭНАС, 2013. 96 с. URL: http://e.lanbook.com/books/element.php?pl1_id=38583 (24.12.2017).

Протокол № () заседания кафедры от « (С» ОС 2017г.					
\mathcal{H}					
Заведующий кафедрой					
подпись, ФИО					
Директор института					
подпись, ФИО					

Рабочая программа без изменения утверждена на 2018/2019 учебный год.
Протокол № <u>10</u> заседания кафедры от « <u>14</u> »_ <u>05</u> 20 18 г.
Заведующий кафедройА.В. Белоусов
Директор институтаА.В. Белоусов

Рабочая программа без изменений утверждена на 2019/2020 учебный год.

Протокол № 13 заседания кафедры от « 07 » июня 2019 г.

Заведующий кафедрой ЭиА

А.В. Белоусов

Директор института ЭИТУС

А.В. Белоусов

Рабочая программа без изменений утверждена на 2020/2021 учебный год.

Протокол № <u>10</u> зас	едания кафедры от « <u>14</u> » <u>моче</u> 2020г.	
Заведующий кафедрой	подпись, ФИО	COB
Директор института	полнись, ФИО	YCO 13

Утверждение рабочей программы без изменений.

Рабочая программа без измен	нений утверждена на 2	20 <u>21</u> /20 <u>22</u> учебный год
Протокол № 11 заседани	ия кафедры от « <u>15</u> » _	мая 2021 г.
Заведующий кафедрой	Hoos	А.В. Белоусов
Директор института	ffossa	А.В. Белоусов

ПРИЛОЖЕНИЯ

1. Методические рекомендации для преподавания по дисциплине «Электрические станции и подстанции»

Курс «Электрические станции и подстанции» представляет собой важную составную часть подготовки студентов по направлению «Электроэнергетика и электротехника», профиль «Электроснабжение».

Целью изучения курса является формирование у будущих специалистов теоретических и практических знаний в области электрических станций и подстанции и их электрооборудования, а также практических навыков по расчету и проектированию схем электрических соединений станций и подстанций, по выбору и проверке электрооборудования.

Изучение дисциплины предполагает решение ряда сложных задач, что дает возможность студентам:

- сформировать представление об электрических станциях и подстанциях в современной электроэнергетике;
- выработать системный подход к изучению и проектированию схем главных электрических соединений станций и подсанций, схем распределительных устройств;
- изучить проблемы проектирования схем и выбора электрооборудования;
- изучить нормативно-техническую документацию, изучить современное электрооборудование, применяемое в схемах электрических станций и подстанций.

Занятия проводятся в виде лекций, практических (семинарских) и лабораторных занятий. Важное значение для изучения курса имеет самостоятельная работа студентов.

Формы контроля знаний студентов предполагают текущий и итоговый контроль. Текущий контроль знаний проводится в форме систематических опросов на практических и лабораторных занятиях. Формами итогового контроля являются зачет в 8 семестре и экзамен в 9 семестре. Кроме этого, в 9 семестре студентами выполняется курсовая работа по проектированию электрической части узловой подстанции.

Распределение материала дисциплины по темам и требования к ее освоению содержатся в *Рабочей программе* дисциплины, которая определяет содержание и особенности изучения курса.

2. Методические указания студентам по самостоятельному изучению дисциплины «Электрические станции и подстанции»

Самостоятельная работа является главным условием успешного освоения изучаемой учебной дисциплины и формирования высокого профессионализма будущих выпускников.

Исходный этап изучения курса «Электрические станции и подстанции» предполагает ознакомление с *Рабочей программой*, характеризующей границы и содержание учебного материала, который подлежит освоению.

Изучение отдельных тем курса необходимо осуществлять в соответствии с поставленными в них целями, их значимостью, основываясь на содержании и

вопросах, поставленных в лекции преподавателя и приведенных в планах и заданиях к лабораторным и практическим занятиям, а также методических указаниях для студентов.

В учебниках и учебных пособиях, представленных в списке рекомендуемой литературы, содержатся возможные ответы на поставленные вопросы. Инструментами освоения учебного материала являются основные термины и понятия, составляющие категориальный аппарат дисциплины. Их осмысление, запоминание и практическое использование являются обязательным условием овладения курсом.

Для более глубокого изучения проблем курса необходимо ознакомиться с нормативными и руководящими документами, публикациями в периодических изданиях и электронных ресурсах, которые указанны в п. 6.3. *Рабочей программы*. Также поиск и подбор таких изданий, статей, материалов и монографий осуществляется на основе библиографических указаний и предметных каталогов.

Изучение каждой темы следует завершать выполнением практических заданий, ответами на вопросы, решением задач, содержащихся в соответствующих разделах учебников и методических пособий по курсу «Электрические станции и подстанции». Для обеспечения систематического контроля над процессом усвоения тем курса следует пользоваться перечнем контрольных вопросов для проверки знаний по дисциплине, содержащихся в планах и заданиях к лабораторным и практическим занятиям и методических указаниях для студентов. Если при ответах на сформулированные в перечне вопросы возникнут затруднения, необходимо очередной раз вернуться к изучению соответствующей темы, либо обратиться за консультацией к преподавателю.

Успешное освоение курса дисциплины возможно лишь при систематической работе, требующей глубокого осмысления и повторения пройденного материала, поэтому необходимо делать соответствующие записи по каждой теме.