МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

УТВЕРЖДАЮ иректор института

д.т.н., проф. Богданов В.С.

DETSEPS

2015 г.

<u>РАБОЧАЯ ПРОГРАММА</u>

дисциплины

Технологическое оборудование

направление подготовки:

15.03.01 Машиностроение

Профиль:

<u>Технологии, оборудование и автоматизация</u> <u>машиностроительных производств</u>

Квалификация

Бакалавр

Форма обучения

<u>Очная</u>

Институт технологического оборудования и машиностроения

Кафедра: Технология машиностроения

Белгород - 2015

Рабочая программа составлена на основании требований:

 Федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.01.
 Машиностроение (уровень бакалавриата), утвержденного приказом Министерства образования и науки Российской Федерации 3 сентября 2015 г. №957

плана учебного процесса БГТУ им. В.Г. Шухова, введенного в действие в 2015 году по направлению подготовки 15.03.01 – Машиностроение, профиль подготовки 15.03.01-01 - Технологии, оборудование и автоматизация машиностроительных производств

Составитель (составители): к.т.н., доцент (Воронкова М.Н.)
Рабочая программа обсуждена на заседании кафедры
« 15 » <u>октября</u> 201 <u>5</u> г., протокол № <u>3</u>
Заведующий кафедрой: д.т.н проф. (Дуюн Т.А.)
Рабочая программа одобрена методической комиссией института
« <u>22</u> » <u>октября</u> 201 <u>5</u> г., протокол № <u>1/1</u>
Председатель к.т.н., доцент

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

	Формируемые компетенции		Требования к результатам обучения
No	Код компетенции	Компетенция	
Профессио		Профессион	нальные
1	ПК-7	Способность	В результате освоения дисциплины
		оформлять	обучающийся должен
		законченные проектно-	
		конструкторские	Знать:
		работы с проверкой	□ виды технологического оборудования
		соответствия	машиностроительного производства
		разрабатываемых	□ металлорежущий станок, как
		проектов и	технологическая система и его устройство
		технической	□ детали и узлы металлорежущих станков
		документации	□ промышленные роботы
	стандартам,		□ г производственные системы.
		техническим условиям	
		и другим нормативным	Уметь:
		документам	□производить настройку технологического
			оборудования
			□производить расчеты и конструирование
			технологического оборудования
			Владеть:
			 □ навыками проектирования и модернизации
			деталей и узлов технологического
			оборудования в соответствии с техническими
			заданиями
			эндинилин

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

$N_{\underline{0}}$	Наименование дисциплины (модуля)
1	Сопротивление материалов
2	Детали машин и основы конструирования

Содержание дисциплины служит основой для изучения следующих дисциплин:

No	Наименование дисциплины (модуля)				
1	Технология машиностроения				
2	Технология обработки на автоматических линиях и станках, гибкие				
	производственные системы				
3	Технология изготовления деталей				
	Автоматизация проектирования технологических процессов и средств				
	технологического оснащения				

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 7 зач. единиц, 252 часов.

Вид учебной работы	Всего часов	Семестр № 4	Семестр № 5
Общая трудоемкость	252		
дисциплины, час			
Контактная работа	85	51	34
(аудиторные занятия), в			
т.ч.:			
лекции	34	34	
лабораторные	17	17	
практические	34		34
Самостоятельная работа	167	43	124
студентов, в том числе:			
Курсовой проект			
Курсовая работа	36		36
Расчетно-графическое			
задания			
Индивидуальное домашнее			
задание			
Другие виды	95	43	52
самостоятельной работы			
Форма промежуточная	36	зачет	36
аттестация	(зачет,экзамен)		(экзамен)
(зачет, экзамен)			

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Наименование тем, их содержание и объем Курс <u>2</u> Семестр <u>4</u>

					чебной
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	
	1. Виды технологического оборудования машинострои	тельно	го про	изводс	тва
	Основные виды оборудования литейного производства. Основные виды оборудования для обработки давлением. Основные виды сварочного оборудования. Технологическое оборудование для нанесения. Основные виды технологического оборудования для сборки	8			7
	2. Общие сведения о металлорежущих станках и ус		ве их у		10
	Металлорежущий станок, как технологическая система. Кинематическая структура станка. Основные узлы и механизмы металлорежущего станка. Технико-экономические показатели и критерии работоспособности станков.	4		9	12
	3. Устройство металлорежущих ста	нков.			
	Устройство металлорежущих станков. Станки токарной группы. Токарные автоматы и полуавтоматы. Станки сверлильные и расточные. Фрезерные станки. Станки долбежной, строгальной, протяжной группы. Шлифовальные и доводочные станки. Станки для электрофизический и электрохимической обработки. Зубообрабатывающие и резьбообрабатывающие станки. Агрегатные станки. Многоцелевые станки. Станки с ЧПУ. Автоматические линии. Системы управления металлорежущими станками.	8		4	9
	4. Расчет и конструирование металлорежу		анков	1	
	Техническая характеристика металлорежущих станков. Привод главного движения металлорежущих станков. Графоаналитический метод кинематического расчета коробок скоростей. Основные типы коробок скоростей. Коробки подач. Структуры и механизмы приводов, кинематический расчет привода подачи. Прочностной расчет основных элементов привода главного движения.	6		4	7
ļ	5. Детали и узлы металлорежущих с			T	
	Шпиндельные узлы металлорежущих станков: основные требования, предъявляемые к ним. Конструкция и материалы шпинделей. Расчет шпинделя. Опоры шпинделей. Корпусные детали и	6			5

узлы станков: станины, направляющие. Требования, предъявляемые к ним, форма и конструкции, материал. Механизмы управления. Системы смазки и охлаждения.				
6. Промышленные роботы Гибкие производствени	ные мод	дули и	гибкие	
производственные системы.				
Классификация роботов. Конструктивные особенности промышленных роботов. Общие сведения о гибких производственных системах. Гибкая производственная ячейка. Классификация оборудования ГПС. Автоматизированная транспорто-складская система ГПС. Система автоматического контроля и измерения. Типовые компоновки ГПМ.	2			3
ВСЕГО	34		17	43

4.2. Содержание практических (семинарских) занятий

No	Наименование	Тема практического (семинарского)	К-во	К-во
Π/Π	раздела дисциплины	занятия	часов	часов
				CPC
		семестр № 5		
1	Устройство	Типовые приводы и механизмы	2	3
	металлорежущих	металлорежущих станков		
2	станков	Настройка кинематических цепей	2	3
		станков токарной группы		
3		Настройка кинематических цепей	2	3
		сверлильных и расточных станков		
4		Настройка кинематических цепей	2	3
		станков фрезерной группы		
5		Настройка кинематических цепей	2	3
		строгальных и долбежных станков		
6		Настройка кинематических цепей	2	3
		зубообрабатывающих станков		
7		Настройка кинематических цепей	2	3
		шлифовальных станков		
8		Настройка кинематических цепей	2	3
		автоматов и полуавтоматов		
9	Расчет и	Определение размерных характеристик	2	3
	конструирование	металлорежущих станков. Расчет		
	металлорежущих	скоростных характеристик		
- 10	станков	металлорежущих станков.		
10		Расчет силовых характеристик	2	3
		металлорежущих станков. Нахождение		
		эффективной мощности привода и		
1.1		мощности электродвигателя.		2
11		Графоаналитический метод	2	3
		кинематического расчета коробок		
		скоростей. Построение структурных		
12		сеток.	2	2
12		Выбор оптимального варианта	2	3
		структуры привода. Построение графика		
13		чисел оборотов.	2	3
13		Определение чисел зубьев колес)

		групповых передач. Проверка		
		правильности кинематических расчетов.		
14		Проектировочный расчет валов, расчет	2	3
		валов на статическую прочность.		
15		Проектировочный и проверочный расчет	2	3
		зубчатых передач.		
15		Выбор и расчет подшипников качения.	2	3
17	Детали и узлы	Изучение конструкции и принципа	2	4
	металлорежущих	работы различных узлов		
	станков	металлорежущих станков.		
		ИТОГО:	34	52

4.3. Содержание лабораторных занятий

$N_{\underline{0}}$	Наименование	Тема лабораторного занятия	К-во	К-во
Π/Π	раздела дисциплины		часов	часов
				CPC
		семестр №4		
1	Общие сведения о	Снятие кинематической схемы станка	4	4
	металлорежущих			
	станках и устройстве			
	их узлов			
2	Устройство	Устройство основных узлов токарно-	5	5
	металлорежущих	винторезного станка и настройка его на		
	станков.	работу		
3	Расчет и	Составление паспорта станка	4	4
	конструирование			
	металлорежущих			
	станков			
4	Общие сведения о	Проверка геометрической точности	4	4
	металлорежущих	станка		
	станках и устройстве			
	их узлов			
		ИТОГО:	17	17

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов

	Наименование	Содержание вопросов (типовых заданий)		
№ п/п	раздела дисциплины			
1	Виды технологического оборудования машиностроительного производства	 Какие виды технологического оборудования применяются в литейном производстве? Какие виды технологического оборудования применяются для обработки деталей давлением? Классификация сварочного оборудования в зависимости от способа сварки. Перечислимте виды технологического оборудования для нанесения покрытий и упрочнения поверхностей. 		

		5. Как классифицируется оборудование для сборки?
2	Общие сведения о	1. Как классифицируются металлорежущие станки? по виду
	металлорежущих станках и	обработки.
	устройстве их узлов	2. Назовите методы образования производящих линий. :
	J. P. S. J. S.	3. Как классифицируются движения в металлорежущих станках?
		4. Что такое кинематическая структура металлорежущего станка?
		5. Перечислите основные узлы металлорежущего станка
		6. Какие типовые передачи применяются в металлорежущих станках?
		7. Перечислить основные технико-экономические показатели станка.
3	Устройство металлорежущих	1. Токарно-винторезные станки: назначение, основные узлы,
	станков	движения в станках, настройка кинематических цепей.
	Claimob	2. Токарно-карусельные станки: назначение, основные узлы,
		движения в станках, настройка кинематических цепей
		3. Токарно-револьверные станки: назначение, основные узлы,
		движения в станка, настройка кинематических цепей.х.
		4. Одношпиндельные автоматы и полуавтоматы: классификация,
		назначение, основные узлы, движения в станках, принцип работы
		5 Многошпиндельные автоматы и полуавтоматы: классификация,
		назначение, основные узлы, движения в станках, принцип работы
		6. Вертикально-сверлильные станки: назначение, основные узлы,
		движения в станках, настройка кинематических цепей
		7. Радиально-сверлильные станки: назначение, основные узлы,
		движения в станках, настройка кинематических цепей
		8. Горизонтально-расточные станки: назначение, основные узлы,
		движения в станках, настройка кинематических цепей
		9. Координатно-расточные станки: назначение, основные узлы,
		движения в станках, настройка кинематических цепей
		10. Вертикально-фрезерные станки: назначение, основные узлы,
		движения в станках, настройка кинематических цепей
		11. Горизонтально-фрезерные станки: назначение, основные узлы,
		движения в станках, настройка кинематических цепей
		12. Продольно-фрезерные станки: назначение, основные узлы,
		движения в станках.
		13. Бесконсольные вертикально-фрезерные станки: назначение,
		основные узлы, движения в станках.
		14. –Фрезерные станки непрерывного действия: назначение, основные
		узлы, движения в станках
		15. Станки долбежной, протяжной, строгальной группы:
		классификация, назначение, виды работ, основные узлы, движения в
		станках, настройка кинематических цепей
		16. Плоскошлифовальные станки: схемы шлифования, назначение,
		основные узлы, движения в станках, настройка кинематических цепей
		17. Бесцентровошлифовальные станки: схемы шлифования,
		назначение, основные узлы, движения в станках, настройка
		кинематических цепей
		18. Внутришлифовальные станки: схемы шлифования, назначение,
		основные узлы, движения в станках, настройка кинематических цепей
		19. Круглошлифовальные станки: схемы шлифования, назначение,
		основные узлы, движения в станках, настройка кинематических цепей
		20. Зубодолбежные станки: назначение, основные узлы, движения в
		станках, настройка кинематических цепей
		21. Зубофрезерные станки: назначение, основные узлы, движения в
		станках, настройка кинематических цепей
		22. Зубострогальные станки6 Зубодолбежные станки: назначение,
		основные узлы, движения в станках, настройка кинематических цепей
		23. Резьбообрабатывающие станки: назначение, основные узлы,
		движения в станках, настройка кинематических цепей
		24. Многоцелевые станки: классификация, назначение, основные узлы.
		25. Агрегатные станки: назначение, область применения, узлы
		агрегатных станков.
		26. Станки с ЧПУ: классификация, область применения, основные
		узлы.
4	Do over v	27. Классификация систем управления металлорежущими станками.
4	Расчет и конструирование	1. Что такое техническая характеристика металлорежущего станка?
	металлорежущих станков	2. Типы приводов металлорежущих станков.

		3. Что такое структурная сетка, с какой целью она строится?
		4. Что такое график чисел оборотов, с какой целью он строится?
		5. Коробки скоростей со сменными колесами: назначение,
		преимуществ, недостатки, структурная формула, график чисел оборотов.
		6. Коробки скоростей со связанными колесами: назначение,
		преимуществ, недостатки, структурная формула, график чисел оборотов.
		7. Коробки скоростей со сложенной структурой: назначение,
		преимуществ, недостатки, структурная формула, график чисел оборотов.
		8. Коробки скоростей частичным совпадением и выпадением
		скоростей: назначение, преимуществ, недостатки, структурная сетка.
		9. Коробки скоростей электродвигателем постоянного тока:
		назначение, преимуществ, недостатки, структурная формула, график
		чисел оборотов.
		10. Коробки скоростей с многоскоростными электродвигателями:
		назначение, преимуществ, недостатки, структурная формула, график
		чисел оборотов.
		11. Коробки скоростей вариаторами: назначение, преимуществ,
		недостатки, структурная формула, график чисел оборотов.
		12. Цель и порядок расчета валов.
		13. Цель и порядок расчета зубчатых передач.
		14. Последовательность выбора и расчета подшипников качения
		15. Назовите структуры и механизмы коробок подач.
		16. Методика кинематического расчета коробок подач.
5	Детали и узлы	1. Какие требования, предъявляются к шпиндельным узлам.
	металлорежущих станков	2. Цель и порядок расчета шпинделя станка на жесткость.
	1 3	3. Цель и порядок расчета шпинделя станка на виброустойчивость.
		4. Опоры валов. Подшипники качения: класс точности и посадки.
		5. Конструкция и принцип работы гидродинамических подшипников.
		6. Конструкция и принцип работы гидростатических подшипников.
		7. Профили поперечных сечений станин и стоек.
		8. Цель и порядок расчета станины на жесткость и деформаций
		станины.
		9. Требования, предъявляемые к направляющим.
		10. Конструктивные формы направляющих.
		11. Способы смазки станков.
		12. Преимущества и недостатки централизованной системы смазки.
		13. Особенности автономной системы смазки.
6	Промышленные роботы.	1. Классификация автоматизированных станочных систем
	Гибкие производственные	механообработки.
	модули и гибкие	2. В чем заключается гибкость автоматизированной станочной
	производственные системы	системы?
	•	3. Классификация АЛ механообработки. Основные устройства АЛ.
		4. Классификация ПР.
1		
		5. Классификация ГПМ. Элементы ГПМ.
		5. Классификация ГПМ. Элементы ГПМ. 6. Назначение ГПС. Классификация ГПС.

5.2. Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем

Выполнение курсовой работы является одним из важнейших этапов подготовки студента к самостоятельной инженерной работе и имеет своей целью:

- развить способность студента анализировать и критически оценивать существующие металлорежущие станки с точки зрения современных требований, направленных на создание и применение новых и усовершенствование существующих станков и их элементов;
- приобрести навык решать комплексные инженерные задачи, имеющие целью разработку наиболее производительного и экономичного оборудования, его наиболее рациональных конструкций применительно к конкретным условиям задания;
- показать умение применять полученные теоретические знания к решению практических задач в области станкостроения;

 показать способность оценивать качество конструкции изделия (узла, агрегата, станка) с точки зрения его технологичности и технологических условий, исходя из назначения и эксплуатации станка.

Перечень тем курсовых работ:

- 1. Спроектировать (модернизировать) станок токарной группы.
- 2. Спроектировать (модернизировать) станок сверлильной группы.
- 3. Спроектировать (модернизировать) станок фрезерной группы.

Курсовой проект состоит из расчетно-пояснительной записки и графической части.

Расчетно-пояснительная записка должна иметь 30-40 листов машинописного текста формата A4 и включать:

- 1. Титульный лист.
- 2. Задание на курсовую работу.
- 3. Содержание.
- 4. Основную часть, включающую в себя:
- введение;
- обоснование и расчет технических характеристик металлорежущего станка;
- кинематический расчет привода главного движения;
- силовой расчет привода главного движения;
- описание конструкции и принципа работы специального станка, а также системы смазки и охлаждения;
- заключение.
 - 5. Список литературы.
 - 6. Приложение.

Объем графической части курсовой работы должен составлять 3 листа формата A1. Примерное расположение материала проекта по листам следующее:

- 2. Кинематическая схема станка 1 лист;
- 3. Развертка коробки скоростей 1 лист;
- 4. Свертка коробки скоростей 1 лист;

На выполнение курсовой работы предусмотрено 36 часов самостоятельной работы студента.

5.3. Перечень индивидуальных домашних заданий, расчетно-графических заданий

РГЗ и ИДЗ учебным планом не предусмотрены.

5.4. Перечень контрольных работ

Контрольные работы учебным планом не предусмотрены.

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

- 1. Сергель, Н.Н. Технологическое оборудование машиностроительных предприятий [Электронный ресурс] : учебное пособие. Электрон. дан. Минск : Новое знание, 2013. 732 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=4321
- 2. Погонин А.А. Кинематический расчет и надежность проектируемого металлорежущего станка : учеб. пособие /. А. А. Погонин, И. В. Шрубченко, Л. В. Лебедев, М.Н. Воронкова Белгород : Изд-во БГТУ им. В. Г. Шухова, 2006 160 с.
- 3. Расчет и конструирование деталей и узлов металлообрабатывающих станков : учеб. пособие / А. Т. Калашников, А. А. Погонин, И. В. Шрубченко, А. Г. Схиртладзе, В. В. Тимирязев, М. Н. Воронкова. Белгород : Изд-во БГТУ им. В. Г. Шухова 2006.

- 4. Авраамова, Т.М. Металлорежущие станки: учебник. В двух томах. Том 1 [Электронный ресурс]: учебник / Т.М. Авраамова, В.В. Бушуев, Л.Я. Гиловой [и др.]. Электрон. дан. М.: Машиностроение, 2011. 608 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=3316.
- 5. Бушуев, В.В. Металлорежущие станки: учебник. В двух томах. Том 2 [Электронный ресурс]: учебник / В.В. Бушуев, А.В. Еремин, А.А. Какойло [и др.]. Электрон. дан. М.: Машиностроение, 2011. 584 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=3317.
- 6. Металлорежущие станки. Методические указания к выполнению курсового проекта./сост. М.Н. Воронкова, А.А. Погонин Белгород.: Изд-во БГТУ им. В.Г.Шухова. 2009.
- 7. Воронкова М.Н., Блинова Т.А., Погонин А.А. Металлорежущие станки. Лабораторный практикум Белгород.: Изд-во БГТУ им. В.Г.Шухова 2015.

6.2. Перечень дополнительной литературы

- 1. Кочергин А.И. Конструирование и расчет металлорежущих станков и станочных комплексов. Курсовое проектирование: Учеб. пособие для вузов. Минск: Вышэйшая школа, 1991.
- 2. Гуртяков А.М. Расчет и проектирование металлорежущих станков [Электронный ресурс]: учебное пособие/ Гуртяков А.М.— Электрон. текстовые данные.— Томск: Томский политехнический университет, 2014.— 136 с.— Режим доступа: http://www.iprbookshop.ru/34708.
- 3. Справочник технолога-машиностроителя: в 2 т. /Под ред. А.Г. Косиловой, Р.К. Мещерякова.- М.: Машиностроение, 1985.

6.3. Перечень интернет ресурсов

- 1. http://stanki-katalog.ru Каталоги станков и кузнечно-прессового оборудования
- 2. http://elibrary.rsl.ru электронная библиотека РГБ;
- 3. http://lib.walla./ публичная электронная библиотека;
- 4. http://techlibrary.ru техническая библиотека;
- 5. http://window.edu.ru/window/library электронная библиотека научно-технической литературы;
- 6. http://www/techlit.ru библиотека нормативно-технической литературы;
- 7. http://e.lanbook.com электронная библиотечная система издательства «Лань»;
- 8. http://www.unilib.neva.ru/rus/lib/resources/elib библиотека СПбГТУ.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Лекционные занятия - специализированная аудитория М305, интерактивные средства обучения: проектор, интерактивная доска.

Практические занятия - компьютерный класс, информационно-поисковые системы на основе специализированных базы данных: металлорежущих станков.

Лабораторные занятия - Лаборатория технологии машиностроения и металлорежущих станков: зубофрезерный станок 5К-310, широкоуниверсальный фрезерный станок 675П, вертикально-сверлильный станок 2Г12, ГПМ 16А20Ф3Р, зубодолбежный станок 5122, станок малогабаритный ТВ-4. токарно-винторезный станок 1А616, токарно-револьверный станок 1К341, токарно-винторезный станок 16К20, универсальный заточной станок 3А64Д, генератор ГОС-301, станок электропрошивочный ВЧЭП101, станок электроэрозионный 4Г721М, технологические приспособления, измерительные устройства, приборы.

Утверждение рабочей программы с изменениями

п. 6.1. «Перечень основной литературы» утвердить в следующей редакции:

- 1. Сергель, Н.Н. Технологическое оборудование машиностроительных предприятий [Электронный ресурс]: учебное пособие. Электрон. дан. Минск: Новое знанис. 2013. 732 с. Режим доступа: http://e.lanbook.com/book/4321
- 2. Погонин А.А. Кинематический расчет и надежность проектируемого металлорежущего станка: учеб. пособие /. А. А. Погонин, И. В. Шрубченко, Л. В. Лебедев, М.П. Воронкова Белгород: Изд-во БГТУ им. В. Г. Шухова, 2006 160 с.
- Расчет и конструирование деталей и узлов металлообрабатывающих станков : учеб. пособие / А. Т. Калашников, А. А. Погонин, И. В. Шрубченко, А. Г. Схиртладзе, В. В. Тимирязев, М. Н. Воронкова. - Белгород : Изд-во БГТУ им. В. Г. Шухова – 2006.
- 4. Авраамова, Т.М. Мсталлорежущие станки: учебник. В двух томах. Том 1 [Электронный ресурс]: учебник / Т.М. Авраамова, В.В. Бушуев, Л.Я. Гиловой [и др.]. Электрон. дан. М.: Машиностроение, 2011. 608 с. Режим доступа: http://e.lanbook.com/book/3316.
- Бушуев, В.В. Металлорежущие станки: учебник. В двух томах. Том 2 [Электропный ресурс]: учебник / В.В. Бушуев, А.В. Еремин, А.А. Какойло [и др.]. Электроп. дап. М.: Машиностроение, 2011. 584 с. Режим доступа: http://e.lanbook.com/book/3317.
- 6. Воронкова М.Н., Блинова Т.А., Погонин А.А. Металлорежущие станки. Лабораторный практикум Белгород.: Изд-во БГТУ им. В.Г.Шухова 2015. Режим доступа: https://elib.bstu.ru/Reader/Book/2017011914590230000000657219
- Воронкова М. Н., Хуртасенко А. В., Шрубченко И. В. Технологическое оборудование. Металлорежущие станки: метод. указания к выполнению курсового проекта для студентов направлений 15.03.01 и 15.03.15. – Белгород: Изд-во БГТУ им. В. Г. Шухова. 2016. – 39 с. Режим доступа: https://elib.bstu.ru/Reader/Book/2016102614125736100000652652

п. 7. «Материально-техническое и информационное обеспечение» утвердить в следующей редакции:

Учебная аудитория для проведения лекционных занятий УК№4, №305. Специализированная мебель, мультимедийная установка и интерактивная доска.

Учебная аудитория для проведения практических занятий УК№4, №312. Специализированная мебель. Мультимедийный проектор, переносной экран, ноутбук.

Научно-исследовательская и учебная лаборатория для проведения лабораторных запятий УЛК. Специализированная мебель. Мультимедийный проектор, переносной экран, ноутбук, зубофрезерный станок 5К-310, широкоуниверсальный фрезерный станок 675П, вертикальносверлильный станок 2Г12, 16А20Ф3, зубодолбежный станок 5122, макет стапка лабораторный ТВ-4. токарпо-револьверный станок 1К341, токарно-винторезный станок 16К20, универсальный заточной станок 3А64Д, технологические приспособления, измерительные устройства, приборы.

Специализированная лаборатория САПР для курсового проектирования и проведения самостоятельной работы. УК№4, №313. Специализированная мебель. Компьютерпая техника, подключенная к сети «Интернет», имеющая доступ в электронную информационнообразовательную среду

Перечень лицепзионного программного обеспечения:

- Microsoft Office Professional 2013 Лицензионный договор № 31401445414от 25.09.2014.
- Google Chrome. Свободно распространяемое ПО согласно условиям лицензионного соглашения.
- Mozilla Firefox. Свободно распространяемое ПО согласно условиям лицензионного соглашения.
 - Учебный комплект КОМПАС-3D V15 на 50 мест, лицензионное соглашение МП-11-

00610 от 06.12.2011.

- Перечень лицензий SIEMENS для БГТУ им. Шухова (соглашение №1114/16 от 24.11.2016

Рабочая программа с изменениями утверждена на 2016/2017 учебный год.

подпись

Протокол № 12 заседания кафедры от «14» 26 20%г.

Заведующий кафедрой

Директор института

Дуюн Т.А. ФИО

Богданов В.С. ФИО

Утверждение рабочей программы с изменениями

п. 6.1. «Перечень основной литературы» утвердить в следующей редакции:

- 1. Сергель, Н.Н. Технологическое оборудование машиностроительных предприятий [Электронный ресурс] : учебное пособие. Электрон. дан. Минск : Новое знание. 2013. 732 с. Режим доступа: http://e.lanbook.com/book/4321
- 2. Погонин А.А. Кинематический расчет и надежность проектируемого металлорежущего станка: учеб, пособие /. А. А. Погонин, И. В. Шрубченко, Л. В. Лебедев, М.Н. Воронкова Белгород: Изд-во БГТУ им. В. Г. Шухова, 2006 160 с.
- Расчет и конструирование деталей и узлов металлообрабатывающих станков: учеб. пособие / А. Т. Калашников, А. А. Погонин, И. В. Шрубченко, А. Г. Схиртладзе. В. В. Тимирязев, М. Н. Воронкова. - Белгород: Изд-во БГТУ им. В. Г. Шухова – 2006.
- 4. Авраамова, Т.М. Металлорежущие станки: учебник. В двух томах. Том 1 [Электронный ресурс]: учебник / Т.М. Авраамова, В.В. Бушуев, Л.Я. Гиловой [и др.]. Электрон. дан. М.: Машиностроение, 2011. 608 с. Режим доступа: http://e.lanbook.com/book/3316.
- 5. Бушуев, В.В. Металлорежущие станки: учебник. В двух томах. Том 2 [Электронный ресурс]: учебник / В.В. Бушуев, А.В. Еремин, А.А. Какойло [и др.]. Электрон. дан. М.: Машиностроение, 2011. 584 с. Режим доступа: http://e.lanbook.com/book/3317.
- 6. Воронкова М.Н., Блинова Т.А., Погонин А.А. Металлорежущие станки. Лаборагорный практикум Белгород.: Изд-во БГТУ им. В.Г.Шухова 2015. Режим доступа: https://elib.bstu.ru/Reader/Book/2017011914590230000000657219
- Воронкова М. Н., Хуртасенко А. В., Шрубченко И. В. Технологическое оборудование. Метадлорежущие станки: метод. указания к выполнению курсового проекта для студентов направлений 15.03.01 и 15.03.15. — Белгород: Изд-во БГТУ им. В. Г. Шухова. 2016.—39 с. Режим доступа: https://elib.bstu.ru/Reader/Book/2016102614125736100000652652
- Технологическое оборудование. Металлорежущие станки: методические указания к проведению практических занятий / сост.: М.Н. Воронкова. Белгород: Изд-во БГТУ, 2017. 26 с. https://elib.bstu.ru/Reader/Book/2017110112065947700000656231

Рабочая программа с изменениями утверждена на 2017/2018 учебный год.

Протокол № 47 3	аседания кафедры от « <i>2</i> /»_	06	20/21.
Заведующий кафедрой	подинсь		юн Т.А. Фио
Директор института	подпись		Dural B.C.

Рабочая программа без	изменении утверждена на	2018/2019 учебный	год.
-----------------------	-------------------------	-------------------	------

Протокол № 11 заседания кафедры от «16 » 05 2018 г.

Заведующий кафедрой_

Дуюн Т.А.

Директор института_

Латышев С.С.

Утверждение рабочей программы без изменений
Рабочая программа без изменений утверждена на 2019 /2020 учебный год.
Протокол № <u>13</u> заседания кафедры от « <u>07</u> » <u>06</u> 20 <u>19</u> г.
Заведующий кафедрой (Т.А. Дуюн)
Директор института (С.С. Латышев)

Утверждение рабочей программы без изменений Рабочая программа без изменений утверждена на 2020/Протокол № 10 заседания кафедры от «25» мая	2021 учебный год. 2020 г.
Заведующий кафедрой	Дуюн Т.А.
Директор института	Латышев С.С.

Утверждение рабочей программы без изме: Рабочая программа без изменений утвержд	нений ена на 2021/2022 учебный год.
Протокол № <u>////</u> заседания кафедры от « <u>///</u>	» <u>мая</u> 2021 г.
Заведующий кафедрой	Дуюн Т.А.
Директор института	Латышев С.С.

ПРИЛОЖЕНИЯ

Приложение №1. Методические указания для обучающегося по освоению дисциплины «Технологическое оборудование».

- 1.1. Подготовка к лекции. Лекции по дисциплине «Технологическое оборудование» читаются в специализированной аудитории М305, оборудованной проектором, компьютером и интерактивной доской, позволяющие демонстрировать рисунки, иллюстрации и чертежи для освоения лекционного теоретического материала. Студент обязан посещать лекции и вести рукописный конспект. Для формирования у обучающегося устойчивых навыков и представлений о технологическом оборудовании машиностроительных производств, его наладке, настройке и основах расчета и проектирования изданы учебные пособия:
- 1. Погонин А.А. Кинематический расчет и надежность проектируемого металлорежущего станка: учеб. пособие /. А. А. Погонин, И. В. Шрубченко, Л. В. Лебедев, М.Н. Воронкова Белгород: Изд-во БГТУ им. В. Г. Шухова, 2006 160 с.
- 2. Расчет и конструирование деталей и узлов металлообрабатывающих станков : учеб. пособие / А. Т. Калашников, А. А. Погонин, И. В. Шрубченко, А. Г. Схиртладзе, В. В. Тимирязев, М. Н. Воронкова. Белгород : Изд-во БГТУ им. В. Г. Шухова 2006.

После того, как был рассмотрен на лекции первый раздел «Виды технологического оборудования машиностроительного производства», обучающийся должен ознакомиться и самостоятельно дополнить свой конспект материалами из пособия [1], которые были освещены в лекции (с. 10-221 и 670-725; второй раздел «Общие сведения о металлорежущих станках и устройстве их узлов» - [1] (с. 226-289), [2] (с. 45-75, 137-156) или [4] (с. 14-98); третий раздел «Устройство металлорежущих станков» - [1] (с. 289-635); четвертый раздел «Расчет и конструирование металлорежущих станков» - [2] (с. 13-45, 72-137), [3] (с. 5-29); пятый раздел «Детали и узлы металлорежущих станков» - [4] (с. 124-268); шестой раздел «Промышленные роботы Гибкие производственные модули и гибкие производственные системы» - [1] (с. 635-670

1.2. Подготовка к практическим занятиям.

Темы практических занятий доводятся студентам на первом занятии. К каждому практическому занятию студент готовится самостоятельно: изучает конспект лекции в соответствии с темой занятия. Для проведения практических занятий имеются учебные пособия [2, 3].

Указанное учебное пособие охватывает все теоретические разделы дисциплины «Технологическое оборудование», а указанный перечень практических занятий позволяет обучающимся последовательно приобретать практические умения и навыки по настройке технологического оборудовании, при решении задач по конструированию деталей и элементов технологического оборудования, осваивать методику разработки и оформления основных видов конструкторской документации.

1.3. Подготовка к лабораторным занятиям.

Темы лабораторных занятий доводятся студентам на первом занятии. К каждому лабораторному занятию студент готовится самостоятельно: изучает конспект лекции в соответствии с темой занятия. Для проведения лабораторных занятий имеется учебное пособие Металлорежущие станки. Лабораторный практикум. М.Н. Воронкова, Т.А. Блинова А.А, Погонин - Белгород.: Изд-во БГТУ им. В.Г.Шухова – 2015.

Лабораторные занятия проводятся в специализированной лаборатории технологии машиностроения и металлорежущих станков, оснащенной необходимым технологическим оборудованием, а также технологическими приспособлениями, измерительными устройствами и приборы.

Программа лабораторных занятий построена с учетом знаний и навыков студентов, приобретенных ими при изучении разделов дисциплины « Технологическое оборудование». Каждый студент должен полностью выполнить предлагаемые работы. Выполнению работы предшествует опрос по теории работы и собеседование по методике ее проведения. После выполнения всей работы до конца студенты составляют отчет по лабораторному практикуму, включающий раздел, где анализируются и объясняются полученные результаты. Итогом

работы является защита полученных результатов, защита проводится устно, индивидуально. Отчеты по лабораторному практикуму составляются каждым студентом и после защиты сдаются преподавателю

1.4. Выполнение курсовой работы.

Для выполнения курсовой работы разработаны методические указания и учебные пособия:

- 1. Погонин А.А. Кинематический расчет и надежность проектируемого металлорежущего станка: учеб. пособие /. А. А. Погонин, И. В. Шрубченко, Л. В. Лебедев, М.Н. Воронкова Белгород: Изд-во БГТУ им. В. Г. Шухова, 2006 160 с.
- 2. Расчет и конструирование деталей и узлов металлообрабатывающих станков : учеб. пособие / А. Т. Калашников, А. А. Погонин, И. В. Шрубченко, А. Г. Схиртладзе, В. В. Тимирязев, М. Н. Воронкова. Белгород : Изд-во БГТУ им. В. Г. Шухова 2006.
- 3. Металлорежущие станки. Методические указания к выполнению курсового проекта./сост. М.Н. Воронкова, А.А. Погонин Белгород.: Изд-во БГТУ им. В.Г.Шухова. 2009.

Курсовая работа выполняется по индивидуальному заданию под руководством руководителя работы. Темы курсовых работ для студентов закрепляются по вариантам заданий, представленных в прил. 1 [6].

Задание на курсовую работу оформляется на специальном бланке и выдается студенту при проведении практического занятия №2.

Задание определяет: тему курсовой работы; исходные данные; объем проекта; сроки выполнения отдельных этапов и проекта в целом. Задание обязательно подписывается руководителем курсовой работы. В литературе [6] представлены структура, содержание и объем пояснительной записки и графической части, в соответствие с требованиями ЕСКД.

Темой курсовой работы может быть создание нового или модернизация существующего станка. При выполнении курсовой работы рекомендуется использовать следующую литературу:

Раздел 1. Обоснование и расчет основных технических характеристик станка - [2] (с. 4-45), [5] (с. 378-397).

Раздел 2. Кинематический расчет привода главного движения. - [2] (с. 72-106), [5] (с. 181-200).

Раздел 3. Динамический расчет привода главного движения -[3] (с. 5-40), [5] (с. 181-200).

Раздел 4. Дополнительный узел - [4] (с. 124-373), http://stanki-katalog.ru Каталоги станков и кузнечно-прессового оборудования.

Раздел 5. Система смазки и охлаждения - -[3] (с. 100-106), [4] (с. 330-358).

Объем графической части курсовой работы должен составлять три листов формата A1 ГОСТ 2.301-72.Примерное расположение материала работы по листам следующее: кинематическая (гидравлическая) схема станка; развертка коробки скоростей (подач); свертка коробки скоростей (подач) Чертежи рекомендуется выполнять в масштабе 1:1, применяя уменьшающие масштабы только для крупных станков.

Требования к графической части работы основаны на выполнении чертежей в соответствии с единой системой конструкторской документации (ЕСКД). Оформление сборочных чертежей осуществляется по ГОСТ 2.109-73. Они должны содержать: габаритные размеры; размеры и предельные отклонения (посадки), определяющие характер сопряжения; размеры и предельные отклонения, которые должны быть выполнены или проконтролированы по данному сборочному чертежу (например, межосевые расстояния); установочные и присоединительные размеры; номера позиций составных частей; основные характеристики изделия.

Кинематические схемы выполняют в соответствии с требованиями ГОСТ 2.703-72, а элементы на схемах изображают условными графическими обозначениями по ГОСТ 2.770-72.

Выполнение гидравлических и пневматических схем основано на соблюдении ГОСТ 2.701-84 и ГОСТ 2.704-76. Линии связи, элементы сетей, аппаратура управления, насосы и двигатели выполняют по ГОСТ 2.721-74, 2.780-96, 2.781-96, 2.782-96.

Основные надписи, их форма, размеры, порядок заполнения в конструкторских документах выполняют в соответствии с ГОСТ 2.104-2006.

К сборочным чертежам прилагаются спецификации.:

Приступать с выполнению графической части курсовой работы можно только после подписи пояснительной записки руководителем курсовой работы. Для разработки графической части курсовой работы рекомендуется пользоваться источником http://stanki-katalog.ru Каталоги станков и кузнечно-прессового оборудования

Консультации по курсовому проектированию проводятся по расписанию два раза в неделю на кафедре технологии машиностроения М309.

Защита курсовой работы осуществляется публично в присутствие всей группы студентов и принимает ее комиссия, состоящая из преподавателей технологии машиностроения(2 - 3чел.).

1.4. Экзамен по дисциплине «Технологическое оборудование» принимает комиссия, состоящая из преподавателей кафедры технологии машиностроения (2 - 3чел.) в соответствие с расписанием экзаменационной сессии.

К сдаче экзамена допускаются студенты, выполнившие и защитившие лабораторные работы. Подготовка к экзамену студентом осуществляется по конспекту лекций, основной и дополнительной литературе, а также электронным ресурсам на базе электронно-библиотечной системы БГТУ им. В.Г. Шухова http://ntb.bstu.ru.

Экзаменационный билет состоит из тестовых вопросов, составленных в соответствие с п.5.1 данной рабочей программы.