МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г. Шухова)

УТВЕРЖДАЮ
Директор ХТИ

мистич

« 17 »

20/6 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

Основы радиационного контроля

Направление подготовки: **20.03.01 Техносферная безопасность**

Профиль подготовки: Радиационная и электромагнитная безопасность

Квалификация **бакалавр**

Форма обучения **очная**

Институт: Химико-технологический институт

Кафедра Теоретической и прикладной химии

Белгород 2016

Рабочая программа составлена на основании требований:

- Федерального государственного образовательного стандарта высшего образования по направлению подготовки 20.03.01 «Техносферная бакалавриата), утвержденного приказом безопасность» (уровень та
- В

Министерства образования и науки Российской Федерации от 21 март 2016 г. № 246;	га
 плана учебного процесса БГТУ им. В.Г. Шухова, введенного действие в 2016 году. 	В
Составитель: к.т.н., доцент (Матюхин П.В.)	
Рабочая программа обсуждена на заседании впускающей кафедры теоретической и прикладной химии	e-
« <u>ОУ</u> » <i>М Ш</i> З 2016 г., протокол № <i>Н</i>	
Заведующий кафедрой: д.т.н., профессор (Павленко В.И.)	
Рабочая программа одобрена методической комиссией Химико-технологического института	
« <u>/6</u> » <u>Мая</u> 2016 г., протокол № <u>У</u>	
Председатель: к т.н. доцент (Порожнюк Л.А.)	

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины направлен на формирование следующих компетенций:

	Ó	Формируемые компетенции			
No	Код ком-	Компетенция	Требования к результатам обучения		
	петенции	,			
1	ПУ 14	Профессиональные	D nonvill tota concolling rolationality		
1	ПК-14	способность определять нормативные уровни допустимых негативных воздействий на человека и окружающую среду	В результате освоения компетенции обучающийся должен Знать: основы радиационного контроля; классификацию радиационных объектов по степени потенциальной опасности; нормы предельно допустимых значений различных видов ионизирующего излучения; организацию работ в области радиационного контроля. Уметь: определять уровни допустимых согласно нормативноправовой документации значений доз ионизирующих излучений различной природы на человека и окружающую среду. Владеть: навыками работы с нормативно-правовой литературой в области обеспечения радиационного контроля и радиационной безопасности.		
2	ПК-15	способность проводить измерения уровней опасностей в среде обитания, обрабатывать полученные результаты, составлять прогнозы возможного развития ситуации	В результате освоения компетенции обучающийся должен Знать: классификацию, назначение, основные технические характеристики приборов радиационного контроля; современные методики, используемые для выявления и измерения источников ионизирующих излучений; дезактивационные мероприятия. Уметь: проводить мониторинг радоновой, электромагнитной безопасности объектов среды; прогнозировать зоны с возможным повышенным значением предельно допустимых дох ионизирующего излучения; использовать знания организационно-правовых основ в своей профессиональной деятельности. Владеть: навыками работы с приборами и оборудованием, используемым в области радиационного		

		1	
			контроля; навыками составления
			прогнозов возможного развития
			ситуации в случае уменьшения
			или увеличения уровней дозовых
			характеристик различного вида
			ионизирующего излучения.
3	ПК-17	способность определять опасные, чрез-	В результате освоения компетенции
		вычайно опасные зоны, зоны приемле-	обучающийся должен
		мого риска	Знать: организацию работы с ра-
			диоактивными веществами и спо-
			собы защиты от излучения; клас-
			сификацию опасных, чрезвычайно
			опасных зон и зон приемлемого
			риска.
			Уметь: на высоком профессио-
			нальном уровне пользоваться со-
			временными приборами дозимет-
			рического контроля для монито-
			ринга объектов среды на выявле-
			ние источников ионизирующих
			излучений.
			Владеть: навыками составления
			топографических карт мониторин-
			га объектов среды на выявление
			источников ионизирующих излу-
			чений с привязкой выявленных
			источников на местности.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

№	Наименование дисциплины
1	Экология
2	Ионизирующие излучения
3	Источники электромагнитных полей
4	Производственная санитария и гигиена труда
5	Радиационный мониторинг зданий и сооружений
6	Производственная практика

Содержание дисциплины служит основой для изучения следующих дисциплин:

No	Наименование дисциплины
1	Надзор и контроль в сфере безопасности
2	Основы электромагнитной безопасности
3	Радиационно-защитное материаловедение
4	Правовые основы радиационной безопасности
5	Преддипломная практика

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 5 зач. единиц, 180 часов.

Вид учебной работы	Всего часов	Семестр № 7
Общая трудоемкость дисциплины, час	180	180
Аудиторные занятия, в т.ч.:	68	68
лекции	34	34
лабораторные		
практические	34	34
Самостоятельная работа студентов, в том числе:	112	112
Курсовой проект		
Курсовая работа		
Расчетно-графическое задания		
Индивидуальное домашнее задание		
Другие виды самостоятельной работы	76	76
Форма промежуточной аттестации (зачет)		
Форма промежуточной аттестации (экзамен)	36	36

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Содержание лекционных занятий

Наименование тем, их содержание и объем

Курс 4 Семестр 7

			і уче труд			-	-	
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические	занятия	Лабораторные	занятия	Самостоятельная	работа
1. Pa,	диационная безопасность и радиационный контроль.							
	Радиационная безопасность, ее цели и задачи, мероприятия по обеспечению. Радиационный контроль и	6	6				1	3
	его виды. Система дозиметрических величин. Контро- лируемые радиационные параметры. Классификация аппаратуры радиационного контроля.							
2. Основные принципы построения приборов радиационного контроля.								
	Метод преобразований при измерении ионизирующих излучений. Преобразование информации в детекторах.	6	6				1	3

	1			
Электронно-измерительные устройства. Микросхемы,				
микропроцессоры и интерфейсы. Блоки детектирова-				
ния и их основные параметры. Условные обозначения				
средств измерений ионизирующих излучений и прави-				
ла их построения.				
3. Дозиметры фотонного излучения.				
Дозиметры: основные виды и измеряемые величины.	6	6		13
Соотношение нормируемых и операционных величин		0		13
для фотонного излучения. Ионизационные газовые до-				
зиметры. Дозиметры с газоразрядными счетчиками.				
Сцинтилляционные и полупроводниковые дозиметры.				
Индивидуальные дозиметры фотонного излучения.				
Фотографические и термолюминесцентные дозимет-				
ры.				
4. Дозиметры нейтронного излучения.	- I		I I	
Соотношение нормируемых и операционных величин				12
для нейтронного излучения. Основные методы и сред-	6	6		13
ства регистрации нейтронов в дозиметрии. Основные				
методы дозиметрии нейтронов. Всеволновые счетчики				
(радиометры) нейтронов. Индивидуальные дозиметры				
нейтронов.				
5. Радиометры, счетчики излучения человека, спектрометриче	еские п	иборы		
Радиометры аэрозолей. Радиометры радона. Радиомет-				
ры газов. Радиометры жидкости и проб окружающей	6	6		13
среды. Счетчики излучения человека. Спектрометриче-				
ские приборы.				
6. Система радиационного контроля, контроль радиоактивног	่ กรละทศ	 Впениа	поверуна	0-
стей.	o sarpn	эпспии	поверхн	O
Источники поверхностной загрязненности радио-				
нуклидами. Виды радиоактивного загрязнения поверх-	4	4		11
ностей. Определение загрязненности поверхности с				
помощью мазков. Методика проведения радиационно-				
го контроля. Контроль загрязненности с помощью				
приборов и установок.				
Итого	34	34		76
111010	34	34		70

4.2. Содержание практических (семинарских) занятий

№ п/п	Наименование раздела дисциплины	Тема практического занятия	К-во часов	К-во часов СРС
1	2	3	4	5
		Семестр № 7		
1	Радиационная безопасность и радиационный контроль.	Мероприятия по обеспечению радиационной безопасности. Аппаратура радиационного контроля.	6	7
2	Основные принципы построения приборов радиационного контроля.	Изучение устройства и принципа действия приборов радиационного контроля. Определение назначения оборудования в зависимости от его маркировки	6	7
3	Дозиметры фотонного излучения.	Ионизационные, газоразрядные и сцинтилляционные дозиметры. Полупроводнико-	6	7

		вые, индивидуальные, фотографические дозиметры.		
4	Дозиметры нейтронного излучения.	Изучение соотношения нормируемых и операционных величин. Методика регистрации ионизирующего излучения	6	7
5	Радиометры, счетчики излучения человека, спектрометрические приборы.	Дозиметрия и радиометрия жидкости и аэрозолей. Дозиметрия и радиометрия радиона и газов	6	7
6	Система радиационно- го контроля, контроль радиоактивного за- грязнения поверхно- стей.	Изучение методики проведения радиационного контроля. Регистрация ионизирующих излучений	4	7
	l	ИТОГО:	34	42

4.3. Содержание лабораторных занятий

Лабораторные занятия при изучении дисциплины не предусмотрены учебным планом.

5. ФОНД ОЦЕНОЧНЫХ СРЕДСВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень типовых вопросов (типовых заданий)

Задания для проведения текущего контроля

$N_{\underline{o}}$	Наименование	Содержание вопросов (типовых заданий)	
Π/Π	раздела дисциплины	Содержание вопросов (типовых задании)	
1	2	3	
7 семестр			
		1-я аттестация	
1	Радиационная безопасность и радиационный контроль.	Понятие радиационной безопасности, ее цели. Задачи и методологическая основа радиационной безопасности. Основные мероприятия по обеспечению радиационной безопасности. Основные базовые законы и нормативные документы в области обеспечения радиационной безопасности. Радиационный контроль, его разновидности. Основные дозиметрические величины. Основные контролируемые радиационные параметры. Классификация аппаратуры контроля радиационной обстановки.	
2	Основные принципы построения приборов радиационного контроля.	Основные принципы построения приборов радиационной безопасности. Преобразование информации в детекторах ионизирующих	

		излучений. Электронно-измерительные устройства. Микросхемы, микропроцессоры и интерфейсы.
		Классификация приборов для измерения ионизирующих из-
		лучений. Блоки детектирования и их основные параметры.
		Специальные параметры блоков детектирования.
		Условные обозначения средств измерений ионизирующих излучений.
		Нормируемые и Операционные величины в дозиметрии.
		Классификация дозиметров по назначению и способу применения.
		Соотношения нормируемых и операционных величин для фотонного излучения.
		Дозиметры с ионизационными камерами: принцип работы, примеры, основные характеристики.
		Дозиметры с газоразрядными счетчиками: принцип работы,
3	Дозиметры фотонного	примеры, основные характеристики.
3	излучения.	Сцинтилляционные дозиметры: принцип работы, примеры, основные характеристики.
		Полупроводниковые дозиметры : принцип работы, примеры,
		основные характеристики.
		Индивидуальные дозиметры фотонного излучения: принцип
		работы, примеры, основные характеристики.
		Прямопоказывающие индивидуальные дозиметры: принцип работы, примеры, основные характеристики.
		Термолюминесцентные дозиметры: принцип работы, приме-
		ры, основные характеристики.
		2-я аттестация
		Соотношение нормируемых и операционных величин для
		нейтронного излучения. Основные методы и средства регистрации нейтронов.
		Газонаполненные детекторы тепловых нейтронов: принцип
		работы, примеры, основные характеристики.
		Сцинтилляционные детекторы нейтронов: принцип работы,
		примеры, основные характеристики.
4	Дозиметры нейтронного	Активационные детекторы: принцип работы, примеры, основные характеристики.
-	излучения.	Основные методы дозиметрии нейтронов.
		Радиометры нейтронов: принцип работы, примеры, основ-
		ные характеристики.
		Индивидуальные дозиметры нейтронов на основе ядерных
		эмульсий: принцип работы, примеры, основные характеристики.
		Альбедные дозиметры нейтронов: принцип работы, приме-
		ры, основные характеристики.
		Основные задачи радиометрии.
	Радиометры, счетчики	Классификация радиометров. Радиометры жидкостей: принцип работы, примеры, основ-
	излучения человека,	ные характеристики.
5	спектрометрические	Радиометры аэрозолей: принцип работы, примеры, основные
	приборы.	характеристики.
		Основные методы регистрации аэрозолей.
1		Радиометры радона: принцип работы, примеры, основные

	Τ	1
		характеристики.
		Альфа- активные газы и аэрозоли, их основные источники.
		Основные величины для нормирования радоновой опасно-
		сти.
		Методы и средства радиометрии радона.
		Радиоактивные бета-газы и их источники.
		Методы регистрации бета- активных газов.
		Жидкостные сцинтилляционные детекторы: принцип рабо-
		ты, примеры, основные характеристики.
		Радиометры бета- активных газов: принцип работы, приме-
		ры, основные характеристики.
		Методики определения содержания радионуклидов в про-
		бах.
		Радиометры жидкости и проб окружающей среды: принцип
		работы, примеры, основные характеристики.
		Источники поверхностной загрязненности радионуклидами.
6	Система радиационного контроля, контроль радиоактивного загрязнения поверхностей.	Виды радиоактивного загрязнения поверхностей.
		Определение загрязненности поверхностей с помощью маз-
		ков.
		Контроль загрязненности с помощью приборов и установок.
		Классификация спектрометров, примеры и их основные ха-
		рактеристики.
		Нейтронные спектрометры: принцип работы, примеры, ос-
		новные характеристики.
		Структурное построение спектрометров.
		Счетчики излучения человека: принцип работы, примеры,
		основные характеристики.
		Системы радиационного контроля, ее основные задачи.
		Технические средства для построения систем радиационно-
		го контроля.
		Виды систем радиационного контроля.
		Дозиметрия эквивалентных доз кожи и хрусталика.
		Дозиметры на основе тонких детекторов: принцип работы,
		примеры, основные характеристики.

Вопросы для проведения аттестации по итогам освоения дисциплины

7 семестр, экзамен

- 1 Понятие радиационной безопасности, ее цели.
- 2 Задачи и методологическая основа радиационной безопасности.
- 3 Основные мероприятия по обеспечению радиационной безопасности.
- 4 Основные базовые законы и нормативные документы в области обеспечения радиационной безопасности.
- 5 Радиационный контроль, его разновидности.
- 6 Основные дозиметрические величины.
- 7 Основные контролируемые радиационные параметры.
- 8 Классификация аппаратуры контроля радиационной обстановки.
- 9 Основные принципы построения приборов радиационной безопасности.
- 10 Преобразование информации в детекторах ионизирующих излучений.
- 11 Электронно-измерительные устройства.

- 12 Микросхемы, микропроцессоры и интерфейсы.
- 13 Классификация приборов для измерения ионизирующих излучений.
- 14 Блоки детектирования и их основные параметры.
- 15 Специальные параметры блоков детектирования.
- 16 Условные обозначения средств измерений ионизирующих излучений.
- 17 Нормируемые и Операционные величины в дозиметрии.
- 18 Классификация дозиметров по назначению и способу применения.
- 19 Соотношения нормируемых и операционных величин для фотонного излучения.
- 20 Дозиметры с ионизационными камерами: принцип работы, примеры, основные характеристики.
- 21 Дозиметры с газоразрядными счетчиками: принцип работы, примеры, основные характеристики.
- 22 Сцинтилляционные дозиметры: принцип работы, примеры, основные характеристики.
- 23 Полупроводниковые дозиметры : принцип работы, примеры, основные характеристики.
- 24 Индивидуальные дозиметры фотонного излучения: принцип работы, примеры, основные характеристики.
- 25 Прямопоказывающие индивидуальные дозиметры: принцип работы, примеры, основные характеристики.
- 26 Термолюминесцентные дозиметры: принцип работы, примеры, основные характеристики.
- 27 Соотношение нормируемых и операционных величин для нейтронного излучения.
- 28 Основные методы и средства регистрации нейтронов.
- 29 Газонаполненные детекторы тепловых нейтронов: принцип работы, примеры, основные характеристики.
- 30 Сцинтилляционные детекторы нейтронов: принцип работы, примеры, основные характеристики.
- 31 Активационные детекторы: принцип работы, примеры, основные характеристики.
- 32 Основные методы дозиметрии нейтронов.
- 23 Радиометры нейтронов: принцип работы, примеры, основные характеристики.
- 34 Индивидуальные дозиметры нейтронов на основе ядерных эмульсий: принцип работы, примеры, основные характеристики.
- 35 Альбедные дозиметры нейтронов: принцип работы, примеры, основные характеристики.
- 36 Основные задачи радиометрии.
- 37 Классификация радиометров.
- 38 Радиометры жидкостей: принцип работы, примеры, основные характеристики.
- 39 Радиометры аэрозолей: принцип работы, примеры, основные характеристики.
- 40 Основные методы регистрации аэрозолей.
- 41 Радиометры радона: принцип работы, примеры, основные характеристики.
- 42 Альфа- активные газы и аэрозоли, их основные источники.
- 43 Основные величины для нормирования радоновой опасности.
- 44 Методы и средства радиометрии радона.
- 45 Радиоактивные бета-газы и их источники.
- 46 Методы регистрации бета- активных газов.
- 47 Жидкостные сцинтилляционные детекторы: принцип работы, примеры, основные характеристики.
- 48 Радиометры бета- активных газов: принцип работы, примеры, основные характеристики
- 49 Методики определения содержания радионуклидов в пробах.
- Pадиометры жидкости и проб окружающей среды: принцип работы, примеры, основные характеристики.
- 51 Источники поверхностной загрязненности радионуклидами.
- 52 Виды радиоактивного загрязнения поверхностей.
- 53 Определение загрязненности поверхностей с помощью мазков.
- 54 Контроль загрязненности с помощью приборов и установок.

- 55 Классификация спектрометров, примеры и их основные характеристики.
- 56 Нейтронные спектрометры: принцип работы, примеры, основные характеристики.
- 57 Структурное построение спектрометров.
- 58 Счетчики излучения человека: принцип работы, примеры, основные характеристики.
- 59 Системы радиационного контроля, ее основные задачи.
- 60 Технические средства для построения систем радиационного контроля.
- 61 Виды систем радиационного контроля.
- 62 Дозиметрия эквивалентных доз кожи и хрусталика.
- 63 Дозиметры на основе тонких детекторов: принцип работы, примеры, основные характеристики.

5.2. Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем.

Курсовые проекты и курсовые работы при изучении дисциплины не предусмотрены учебным планом.

5.3. Перечень индивидуальных домашних заданий, расчетно-графических заданий.

Перечень индивидуальных домашних заданий

Индивидуальные домашние задания при изучении дисциплины не предусмотрены учебным планом.

Перечень расчетно-графических заданий

Расчетно-графические задания (РГЗ) при изучении дисциплины не предусмотрено учебным планом.

5.4. Перечень контрольных работ

Контрольные работы при изучении дисциплины не предусмотрены учебным планом.

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

- 1. Матюхин П.В. Основы радиационного контроля: Учебное Пособие / П.В. Матюхин, Р.Н. Ястребинский, Н.И. Черкашина, А.А. Карнаухов. Белгород: Изд-во БГТУ им В.Г. Шухова, 2016.- 167с.
- 2. Сидельникова О. П. Радиационный контроль в строительной индустрии: учеб. пособие / О.П. Сидельникова. М.: Изд-во АСВ, 2002. 206 с.

6.2. Перечень дополнительной литературы

- 1. Числов, Н. Н. Введение в радиационный контроль: учебное пособие / Числов Н. Н. Томск: Томский политехнический университет, 2014. 199 с. (Электронный ресурс IPRbooks. Режим доступа: http://www.iprbookshop.ru/34653.html).
- 2. Пивоваров Ю. П. Радиационная экология: учеб. пособие / Ю.П. Пивоваров, В.П. Михалев. М.: Академия, 2004. 239 с.
- 3. Кудряшов Ю.Б. Радиационная биофизика (ионизирующие излучения): учебник / Ю.Б. Кудряшов. М.: Физматлит, 2004. 442 с.
- 4. Ахременко С. А. Управление радиационным качеством строительной продукции: учеб. пособие / С.А. Ахременко. М.: Изд-во АСВ, 2000. 236 с.
- 5. Купаев В. И. Радиационная безопасность на объектах железнодорожного транспорта: учебное пособие / Купаев В. И., Рассказов С.В. Москва: Учебно-методический центр по образованию на железнодорожном транспорте, 2013. 576 с. (Электронный ресурс IPRbooks. Режим доступа: http://www.iprbookshop.ru/26830.html).
- 6. Черняев А.П. Взаимодействие ионизирующего излучения с веществом : учеб. пособие / А. П. Черняев. М.: ФИЗМАТЛИТ, 2004. 151 с.
- 7. Егер Р. Дозиметрия и защита от излучений (физические и технические константы): пер. с нем. / Р. Егер. М.: Госатомиздат, 1961. 205 с.

6.3. Перечень интернет ресурсов

- 1. http://www.rosenergoatom.ru
- 2. http://www.docload.ru/Basesdoc/7/7569/index.htm
- 3. http://www.russianatom.ru
- 4. http://dic.academic.ru/dic.nsf/bse/88315/Защита
- 5. http://dic.academic.ru/dic.nsf/enc3p/249514
- 6. http://nuclphys.sinp.msu.ru/seminar/sem1/sem15a.htm
- 7. http://www.doza.net.ua/pages/ru ref dozim.htm
- 8. http://www.doza.ru
- 9. http://bjd-online.ru/pribory-radiacionnoj-ximicheskoj-razvedki-i-dozimetricheskogo-kontrolya/
- 10. http://www.fumc.ru/rules/31265.html
- 11. http://radgig.ru/nd/SP_2.6.1.2612-10_osporb-99-2010.pdf
- 12. http://www.welding.su/library/kontrol/kontrol 120.html

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Специализированная лаборатория радиационного контроля:

Альфа-бета радиометр УМФ-2000, гамма- радиометр РУГ-2000М, сцинтилляционный гамма-бета- спектрометр «Прогресс-БГ(П)» с использованием гамма- и бета- трактов спектрометра СКС-99 «Спутник», измеритель параметров электрического и магнитного полей ВЕ-метр-АТ-002, универсальный прибор газового контроля УПГК-ЛИМБ, дозимерт-радиометр «ДРБП-03», радиометр радона PPA-01М-01 «Альфарад», универсальный измеритель уровней электростатических полей СТ-01, анализатор газортутный переносной АГП-01-2М.

Лаборатория специальных композитов:

Вытяжной шкаф, муфельная печь, рН-метры, ионометры, сушильный шкаф, весы, компьютеры, пресс, насосы, мост переменного тока, кондуктометрическая ячейка.

Лаборатория неорганической химии и анализа:

Титровальный столик, рН-метры, фотоэлектроколориметры ФЭК-2, хроматографы.

Учебная лаборатория химии, оснащенная компьютерным классом: Лабораторные столы, вытяжной шкаф, магнитные мешалки, центрифуги, аналитические весы, электролизер, электрические плитки, 12 компьютеров.

ПРИЛОЖЕНИЯ

Приложение №1.

Методические указания для обучающегося по освоению дисциплины

Курс «Основы радиационного контроля» представляет собой неотъемлемую составную часть подготовки студентов по направлению подготовки 20.03.01 «Техносферная безопасность» профиля подготовки 20.03.01-04 «Радиационная и электромагнитная безопасность» профессионального цикла.

Изучение курса «Основы радиационного контроля» должно способствовать развитию у студентов полного представления нормативной и правовой базы в области радиационного материаловедения, обеспечения радиационной безопасности, надзору и контролю за ее обеспечением.

Главная задача высшей школы — научить студента мыслить, непрерывно повышать свой образовательный уровень, что позволит ему в дальнейшем самостоятельно осваивать новейшие достижения науки и техники. Возникает проблема закрепления полученных знаний, навыков. Не подкрепленные умениями и навыками знания частично утрачиваются. Результатом любого общения является использование приобретенных знаний и умений на практике. Известно, что достоянием личности становятся лишь те знания, которые приобретены с помощью творческой работы через преодоление трудностей.

Одним из путей решения этой задачи является организация и контроль самостоятельной работы студентов. Без самостоятельной работы студента и контроля со стороны преподавателя целенаправленный, плодотворный процесс невозможен.

Педагогический контроль является составной частью учебного процесса, который устанавливает прямую и обратную связи между преподавателем и студентом.

Умение самообразовательной деятельности включает в себя:

- планирование самостоятельной работы;
- использование современной литературы и компьютерных программ;
- осуществление самоконтроля работы, умение объективно оценивать результаты.

Задача преподавателя – помочь студенту в развитии его творческой самостоятельности, которое будет проходить наиболее эффективно, если максимально использовать и стимулировать индивидуальную творческую деятельность студента.

Задачами дисциплины «Основы радиационного контроля» являются освоение студентами основных понятий дозиметрии, особенностей взаимодействия гамма-квантов и нейтронов с веществом, методик, формул, использующихся при проектировании радиационной защиты и проведении дезактивации; формирование у студентов прочных знаний в области организации работ с радиоактивными веществами, защиты от излучения, основ дозиметрии и дозиметрического контроля радиоактивности. Знание курса дисциплины необходимо для успешного изучения последующих общепрофессиональных дисциплин, а в дальнейшем для успешной творческой деятельности обученного.

После изучения дисциплины студент должен знать основы радиационного контроля; классификацию радиационных объектов по степени потенциальной опасности; нормы предельно допустимых значений различных видов ионизирующего излучения; организацию работ в области радиационного контроля; классификацию, назначение, основные технические характеристики приборов радиационного контроля; современные методики, используемые для выявления и измерения источников ионизирующих излучений; дезактивационные мероприятия; организацию работы с радиоактивными веществами и способы защиты от излучения; классификацию опасных, чрезвычайно опасных зон и зон приемлемого риска; основные методики исследований доз различных видов ионизирующего излучения, напряженности электростатического поля, плотности магнитного потока.

После изучения дисциплины студент должен уметь определять уровни допустимых согласно нормативно-правовой документации значений доз ионизирующих излучений различной природы на человека и окружающую среду; проводить мониторинг радоновой, электромагнитной

безопасности объектов среды; прогнозировать зоны с возможным повышенным значением предельно допустимых дох ионизирующего излучения; использовать знания организационноправовых основ в своей профессиональной деятельности; на высоком профессиональном уровне пользоваться современными приборами дозиметрического контроля для мониторинга объектов среды на выявление источников ионизирующих излучений; грамотно использовать и в зависимости от возникших ситуаций применять на практике методики измерений источников ионизирующих излучений.

После изучения дисциплины студент должен владеть навыками работы с нормативноправовой литературой в области обеспечения радиационного контроля и радиационной безопасности; навыками работы с приборами и оборудованием, используемым в области радиационного контроля; навыками составления прогнозов возможного развития ситуации в случае уменьшения или увеличения уровней дозовых характеристик различного вида ионизирующего излучения; навыками составления топографических карт мониторинга объектов среды на выявление источников ионизирующих излучений с привязкой выявленных источников на местности; основными знаниями, полученными в лекционном курсе дисциплины и на практических занятиях, необходимыми для выполнения теоретически и практически поставленных задач, которые в дальнейшем помогут решать на высоком профессиональном уровне поставленные задачи в области радиационного контроля.

Исходный этап изучения курса «Основы радиационного контроля» предполагает ознакомление с рабочей программой, характеризующей границы и содержание учебного материала, который подлежит освоению.

Занятия по дисциплине проводятся в виде лекционных и практических занятий.

Формы контроля знаний студентов предполагают текущий и итоговый контроль. Текущий контроль знаний проводится в форме систематических опросов и проведения устных или письменных защит изученного материала. Формой итогового контроля в седьмом семестре является экзамен.

Распределение материала дисциплины по разделам (модулям) и требования к ее освоению содержатся в рабочей программе дисциплины, которая определяет содержание и особенности изучения курса.

В первом разделе изучаются радиационная безопасность и радиационный контроль: радиационная безопасность, ее цели и задачи, мероприятия по обеспечению; радиационный контроль и его виды; система дозиметрических величин; контролируемые радиационные параметры; классификация аппаратуры радиационного контроля (основная литература [1] стр. 4-9, 29-31, [2]).

Во втором разделе изучается основные принципы построения приборов радиационного контроля: метод преобразований при измерении ионизирующих излучений; преобразование информации в детекторах; электронно-измерительные устройства; микросхемы, микропроцессоры и интерфейсы; блоки детектирования и их основные параметры; условные обозначения средств измерений ионизирующих излучений и правила их построения (основная литература [1] стр. 11-29, [2]).

В третьем разделе изучаются дозиметры фотонного излучения: дозиметры, основные виды и измеряемые величины; соотношение нормируемых и операционных величин для фотонного излучения; ионизационные газовые дозиметры; дозиметры с газоразрядными счетчиками; сцинтилляционные и полупроводниковые дозиметры; индивидуальные дозиметры фотонного излучения; фотографические и термолюминесцентные дозиметры (основная литература [1] стр. 47-56, [2]).

В четвертом разделе изучаются дозиметры нейтронного излучения: соотношение нормируемых и операционных величин для нейтронного излучения; основные методы и средства регистрации нейтронов в дозиметрии; основные методы дозиметрии нейтронов; всеволновые счетчики (радиометры) нейтронов; индивидуальные дозиметры нейтронов (основная литература [1] стр. 56-63, [2]).

В пятом разделе изучаются радиометры, счетчики излучения человека, спектрометрические приборы: радиометры аэрозолей; радиометры радона; радиометры газов; радиометры жид-

кости и проб окружающей среды; счетчики излучения человека; спектрометрические приборы (основная литература [1] стр. 63-79, [2]).

В шестом разделе изучаются система радиационного контроля, контроль радиоактивного загрязнения поверхностей; источники поверхностной загрязненности радионуклидами; виды радиоактивного загрязнения поверхностей; определение загрязненности поверхности с помощью мазков; методика проведения радиационного контроля; контроль загрязненности с помощью приборов и установок (основная литература [1] стр. 80-162, [2]).

На последней лекции седьмого семестра студенты знакомятся с методикой проведения экзамена.

Изучение отдельных разделов курса необходимо осуществлять в соответствии с поставленными в них целями, их значимостью, основываясь на содержании и вопросах, поставленных в лекции преподавателя и приведенных в планах и заданиях к практическим занятиям, а также в других источниках учебно-методической литературы дисциплины.

В учебниках и учебных пособиях, нормативно-правовых актах РФ у представленных в средствах обеспечения освоения дисциплины содержатся возможные ответы на поставленные вопросы. Инструментами освоения учебного материала являются основные термины и понятия, составляющие категориальный аппарат дисциплины. Их осмысление, запоминание и практическое использование являются обязательным условием овладения курсом.

Для более глубокого изучения проблем курса при подготовке докладов и выступлений необходимо ознакомиться с публикациями в периодических изданиях. Поиск и подбор таких изданий, статей, материалов осуществляется на основе библиографических указаний и предметных каталогов.

Если при ответах на сформулированные в перечне основных вопросов возникнут затруднения, необходимо очередной раз вернуться к изучению соответствующей темы, либо обратиться за консультацией к преподавателю.

Успешное освоение курса дисциплины возможно лишь при систематической работе, требующей глубокого осмысления и повторения пройденного материала, поэтому необходимо делать соответствующие записи по каждому разделу.

8. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Рабочая программа с изменениями утверждена на 2017/2018 учебный год.

6.1. Перечень основной литературы

- 1. Матюхин П.В. Основы радиационного контроля: Учебное Пособие / П.В. Матюхин, Р.Н. Ястребинский, Н.И. Черкашина, А.А. Карнаухов. Белгород: Изд-во БГТУ им В.Г. Шухова, 2016.- 167с.
- 2. Сидельникова О. П. Радиационный контроль в строительной индустрии: учеб. пособие / О.П. Сидельникова. М.: Изд-во АСВ, 2002. 206 с.
- 3. Матюхин П.В. Основы радиационного контроля. Практика отбора и подготовки проб: учебное пособие для реализации основных профессиональных образовательных программ высшего образования по направлению подготовки бакалавров 20.03.01 «Техносферная безопасность» / П. В. Матюхин [и др.]. Белгород: Издательство БГТУ им. В. Г. Шухова, 2017.- 99 с. (Электронный ресурс. Режим доступа: https://elib.bstu.ru/Reader/Book/2017121411260045900000651264).

Протокол № 14 заседания кафедры ТиПХ от «05» июня 2017 г.

Заведующий кафедрой ТиПХ д.т.н, профессор

Павленко В.И.

8.1. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Рабочая программа с изменениями по следующим пунктам утверждена на 2018/2019 учебный год.

6.1. Перечень основной литературы

- 1. Матюхин П.В. Основы радиационного контроля: Учебное Пособие / П.В. Матюхин, Р.Н. Ястребинский, Н.И. Черкашина, А.А. Карнаухов. Белгород: Изд-во БГТУ им В.Г. Шухова, 2016.- 167с.
- 2. Сидельникова О. П. Радиационный контроль в строительной индустрии: учеб. пособие / О.П. Сидельникова. М.: Изд-во АСВ, 2002. 206 с.
- 3. Матюхин П.В. Основы радиационного контроля. Практика отбора и подготовки проб: Учебное пособие для реализации основных профессиональных образовательных программ высшего образования по направлению подготовки бакалавров 20.03.01 «Техносферная безопасность» / П.В. Матюхин [и др.]. Белгород: Издательство БГТУ им. В. Г. Шухова, 2017.- 152 с.
- 4. Матюхин П.В. Основы радиационного контроля: учебное пособие для реализации основных профессиональных образовательных программ высшего образования по направлению подготовки бакалавров 20.03.01 «Техносферная безопасность» / П.В. Матюхин, Р.Н. Ястребинский, В.И. Павленко, Л.В. Денисова. Белгород: Издательство БГТУ им. В. Г. Шухова, 2018. 168 с.

Протокол № 11 заседания кафедры ТиПХ от «21» мая 2018 г.

Заведующий кафедрой ТиПХ д.т.н, профессор

Виновичен Павленко В.И.

8.2. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Рабочая программа без изменений утверждена на 2019/2020 учебный год.

Протокол № 13 заседания кафедры ТиПХ от «22» мая 2019 г.

Заведующий кафедрой ТиПХ д.т.н, профессор

applier

Павленко В.И.

8. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Рабочая программа утверждена на 2020/2021 учебный год без изменений.

Протокол № 9 заседания кафедры ТиПХ от «14» мая 2020 г.

Заведующий кафедрой ТиПХ д.т.н, профессор

Ристе Павленко В.И.

Директор института

Павленко В.И.