МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г. Шухова)

УТВЕРЖДАЮ Директор института Уваров В.А.

РАБОЧАЯ ПРОГРАММА

дисциплины

Компьютерное моделирование в системах вентиляции (наименование дисциплины, модуля)

направление подготовки (специальность):

20.03.01 «Техносферная безопасность» (шифр и наименование направления бакалавриата, магистра, специальности)

Направленность программы (профиль, специализация):

«Защита в чрезвычайных ситуациях» (наименование образовательной программы (профиль, специализация)

Квалификация

бакалавр (бакалавр, магистр, специалист)

Форма обучения

очная (очная, заочная и др.)

Институт: архитектурно-строительный

Кафедра: теплогазоснабжения и вентиляции

Рабочая программа составлена на основании требований: • Федерального государственного образовательного высшего образования по направлению подготовки 20.03.01 «Техносферная безопасность» (уровень бакалавриата), утвержденного приказом № 246 от 21.03.2016 г. плана учебного процесса БГТУ им. В.Г. Шухова, введенного в действие в 2016 году. Составитель: д-р техн. наук, профессор Ощ д-р техн. наук, профессор (О.А. Аверкова) (ученая степень и звание, подпись) (инициалы, фамилия) Рабочая программа согласована с выпускающей кафедрой «Защита в чрезвычайных ситуациях» Заведующий кафедрой: канд. техн. наук, доц. (Шульженко В.Н.) (ученая степень и звание, подпись) (инициалы, фамилия) 2016 г. Рабочая программа обсуждена на заседании кафедры «Теплогазоснабжения и вентиляции» « 14 » съ 2016 г., протокол № 11 Заведующий кафедрой: д-р техн. наук, проф. В.А. Уваров) (ученая степень и звание, подпись) (инициалы, фамилия) Рабочая программа одобрена методической комиссией института «Архитектурно-строительного»

2016 г., протокол № *9*

(ученая степень и звание, подпись)

(A.Ю. Феоктистов)

(инициалы, фамилия)

Председатель канд. техн. наук, доцент

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

		Формируемые компетенции	Требования к результатам
<u>№</u>	Код	Компетенция	обучения
	компетенции		
		Общепрофессиональные	
1	ОПК-1	Способность учитывать современные тенденции развития техники и технологии в области обеспечения техносферной безопасности, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности.	В результате освоения дисциплины обучающийся должен Знать: информационные технологии при решении математических задач; Уметь: использовать компьютерные методы решения математических задач; Владеть: методами компьютерного моделирования
		Профессиональные	
2	ПК-15	Способностью проводить измерения уровней опасностей в среде обитания, обрабатывать полученные результаты, составлять прогнозы возможного развития ситуации	В результате освоения дисциплины обучающийся должен Знать: методы обработки экспериментальных данных; Уметь: анализировать адекватность аналитических данных относительно экспериментальных. Владеть: навыками и основными методами обработки экспериментов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

№	Наименование дисциплины (модуля)
1	Математика
2	Информатика

Содержание дисциплины служит основой для изучения следующих дисциплин:

No	Наименование дисциплины (модуля)
1	Выполнение ВКР

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 2 зач. единиц, 72 часов.

Вид учебной работы	Всего	Семестр
	часов	№ 2
Общая трудоемкость дисциплины, час	72	72
Контактная работа (аудиторные занятия), в т.ч.:	34	34
лекции	17	17
лабораторные	17	17
практические	-	-
Самостоятельная работа студентов, в том числе:	34	34
Курсовой проект	-	=
Курсовая работа	-	-
Расчетно-графическое задания	-	-
Индивидуальное домашнее задание		
Другие виды самостоятельной работы	-	-
Форма промежуточная аттестация	Зачет,	Зачет
(зачет, экзамен)	Экзамен	

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Наименование тем, их содержание и объем Курс <u>1</u> Семестр <u>2</u>

			ем на т ел по вы нагруз		іебной
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа
1. N	Метод сеток, разностные схемы				
	Основные понятия и определения. Краевая задача для уравнения Пуассона. Графическое представление решения.	4		2	4
	Основные разностные схемы для решения нестеплопроводности.	стацио	<u> </u> нарного	ура	внения
	Явная схема. Неявная схема. Решение уравнения теплопроводности с использованием явной схемы. Решение уравнения теплопроводности с использованием неявной схемы.	4		4	6
3. ^L	Иисленное моделирование вихревых течений в закрытых в	ВЫТЯЖЕ	ых уст	ройства	ax.
	Вычислительный алгоритм расчета вихревых течений в аспирационном укрытии. Комбинация методов граничных интегральных уравнений и дискретных вихрей. Расчет течений в многосвязных пульсирующих газодинамических областях	2		4	5
4. ^U	Нисленное моделирование вихревых течений в многосвязн	ных об.	пастях	с разре	зами.
	Вычислительный алгоритм расчета вихревых течений в многосвязных областях с разрезами. Условие Томпсона. Расчет течения на входе в щелевидные каналы с экранами. Расчет течения в многосвязных областях с разрезами.	2		3	5
5. ^L					
	Поле скоростей от вихревого отрезка. Вихревые многоугольники. Расчет вихревых течений газа на входе в квадратные и многоугольные всасывающие каналы. Расчет экранированных вытяжных устройств. Оптимизация вытяжных устройств по критерию дальнобойности.	2		4	5
6. N	Метод дискретных стационарных вихрей				
	Вычислительный алгоритм расчета на входе в щелевидный и круглый всасывающие каналы при задании величины постоянной циркуляции на	3			2

свободной поверхности тока. Вычислительный			
алгоритм расчета на входе в щелевидный и круглый			
всасывающие каналы при средней скорости			
всасывания. Расчет изменения к.м.с. входа в			
неплотности щелевидной и круглой формы при их			
механическом экранировании. Расчет течений на входе			
в отсосы-раструбы в неограниченном пространстве.			
Расчет течений на входе в отсосы-раструбы над			
непроницаемой плоскостью. Расчет течений на входе в			
круглый всасывающий патрубок при наличии			
набегающего потока. Расчет течений на входе в			
отсосы-раструбы при наличии набегающего потока			
ВСЕГО	17	17	27

4.2. Содержание практических (семинарских) занятий

Не предусмотрены

4.3. Содержание лабораторных занятий

<u>No</u>	Наименование	Тема лабораторного занятия	К-во	К-во
п/п	раздела дисциплины		часов	часов СРС
семе	стр № 2			
1	Метод сеток, разностные схемы	Краевая задача для уравнения Пуассона.	2	2
2	Основные разностные	Решение уравнения теплопроводности с	2	2
2	схемы для решения	использованием явной схемы.	2	
	нестационарного	PICTOJIBSOBUTIPIEM ABITOM CACMBI.		
	уравнения			
	теплопроводности.			
3	Основные разностные	Решение уравнения теплопроводности с	2	2
	схемы для решения	использованием неявной схемы.		
	нестационарного			
	уравнения			
	теплопроводности.			
4	Численное	Расчет вихревых течений в замкнутых	2	2
	моделирование	областях.		
	вихревых течений в			
	закрытых вытяжных			
	устройствах.			
5	Численное	Расчет пылегазовых потоков в	2	2
	моделирование	пульсирующих газодинамических		
	вихревых течений в	полях		
	закрытых вытяжных			
	устройствах.	D.	4	
6	Численное	Расчет течения на входе в щелевидные	1	1
	моделирование	каналы с механическими экранами		
	вихревых течений в			
	многосвязных областях			
	с разрезами.			

8	Численное	Расчет течения в многосвязных	2	2
	моделирование	областях с разрезами.		
	вихревых течений в			
	многосвязных областях			
	с разрезами.			
9	Численный метод	Расчет вихревых течений на входе в	1	1
	дискретных вихревых	квадратный всасывающий канал.		
	многоугольников			
10	Численный метод	Расчет вихревых течений на входе в	1	1
	дискретных вихревых	круглый всасывающий канал.		
	многоугольников			
11	Численный метод	Расчет вихревых течений на входе в	2	2
	дискретных вихревых	экранированный всасывающий канал.		
	многоугольников			
BCEI	ГО:		17	17

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов (типовых заданий)

	5.1. перечень контрольных вопросов (типовых задании)				
No	Наименование	Содержание вопросов (типовых заданий)			
п/п	раздела дисциплины				
1	Метод сеток,	1. Основные понятия и определения.			
	разностные схемы	2. Краевая задача для уравнения Пуассона.			
		3. Графическое представление решения.			
2	Основные	1. Явная схема.			
	разностные схемы	2. Неявная схема.			
	для решения	3. Решение уравнения теплопроводности с использованием			
	нестационарного	явной схемы.			
	уравнения	4. Решение уравнения теплопроводности с использованием			
	теплопроводности.	неявной схемы.			
3	Численное	1. Вычислительный алгоритм расчета вихревых течений в			
	моделирование	аспирационном укрытии.			
	вихревых течений в	2. Комбинация методов граничных интегральных уравнений			
	закрытых вытяжных	и дискретных вихрей.			
	устройствах.	3. Расчет течений в многосвязных областях в пульсирующих			
		газодинамических полях.			
4	Численное	1. Вычислительный алгоритм расчета вихревых течений в			
	моделирование	многосвязных областях с разрезами.			
	вихревых течений в	2. Условие Томпсона неизменности циркуляции.			
	многосвязных	3. Расчет течения на входе в щелевидные неплотности			
	областях с	аспирационных укрытий.			
	разрезами.	4. Расчет течения в областях с тонкими экранами.			
5		1. Поле скоростей от вихревого отрезка.			
	Численный метод	2. Вихревые многоугольники.			
	дискретных	3. Расчет вихревых течений на входе в квадратные и			
	вихревых	многоугольные всасывающие каналы.			
	многоугольников	4. Расчет экранированных вытяжных устройств.			
		5. Оптимизация вытяжных устройств по критерию			
		дальнобойности.			
6.	Мата и изуачи аттич	1. Вычислительный алгоритм расчета на входе в щелевидный			
	Метод дискретных	и круглый всасывающие каналы при задании величины			
	стационарных	постоянной циркуляции на свободной поверхности тока.			
	вихрей	2. Вычислительный алгоритм расчета на входе в щелевидный			
		и круглый всасывающие каналы при средней скорости			
		всасывания.			
		3. Расчет изменения к.м.с. входа в неплотности щелевидной и			
		круглой формы при их механическом экранировании.			
		4. Расчет течений на входе в отсосы-раструбы в			
		неограниченном пространстве.			
		5. Расчет течений на входе в отсосы-раструбы над			
		непроницаемой плоскостью.			
		6. Расчет течений на входе в круглый всасывающий патрубок			
		при наличии набегающего потока.			
		7. Расчет течений на входе в отсосы-раструбы при наличии			
		набегающего потока.			

5.2. Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем.

Не предусмотрены

5.3. Перечень индивидуальных домашних заданий, расчетно-графических заданий.

1. Исследование пылевоздушных течений на входе в вытяжные устройства и отсосы-раструбы в условиях набегающего потока.

Выполнение ИДЗ предусматривает построение линий тока, критической линии тока, траекторий пылевых частиц, предельной траектории пылевой частицы, коэффициента аспирации на входе во всасывающие круглые каналы или отсосы-раструбы в условиях набегающего потока.

5.4. Перечень контрольных работ.

Не предусмотрены

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

- 1. Численные методы. В. А. Срочко, Москва: Наука, 2013
- 2. Математические модели и численные методы САПР систем ТГВ. К. И. Логачев, О. А. Аверкова. Учебное пособие, Белгород: Изд-во БГТУ им. В.Г.Шухова, 2010
- 3. Аверкова, О. А. Математическое моделирование процессов в системах аспирации [Электронный ресурс]: учеб. пособие. Ч. І; Ч. ІІ / О. А. Аверкова, К. И. Логачёв.- Белгород: Изд-во БГТУ им. В. Г. Шухова, 2007. https://elib.bstu.ru/Reader/Book/2013040918051481673700006545
- 4. Аверкова, О. А. Вычислительный эксперимент в аэродинамике вентиляции [Электронный ресурс]: [учеб. пособие] / О. А. Аверкова. Белгород: Изд-во БГТУ им. В. Г. Шухова, 2011. https://elib.bstu.ru/Reader/Book/2013040917451329503300006246

6.2. Перечень дополнительной литературы

- 6 Зарубин, В. С. Математическое моделирование в технике: учеб. для вузов / В. С. Зарубин. 2-е изд., стереотип. Москва: Издательство МГТУ им. Н. Э. Баумана, 2003. 495 с. (Математика в техническом университете; вып. XXI, заключительный).
- 7 Пирумов, У. Г. Численные методы: учеб. пособие / У. Г. Пирумов. 2-е изд., испр. и доп. Москва: Дрофа, 2003. 221 с. (Высшее образование).
- 8 Аверченков В.И. Основы математического моделирования технических систем [Электронный ресурс]: учебное пособие/ В.И. Аверченков Брянск: Брянский государственный технический университет, 2012.— 271с. http://www.iprbookshop.ru/7003
- 9 Янилкин Ю.В., Стаценко В.П., Козлов В.И. Математическое моделирование турбулентного перемешивания в сжимаемых средах [Электронный ресурс]: учебное пособие/ Ю.В. Янилкин, В. П. Стаценко, В.И. Козлов Саратов: Российский федеральный ядерный центр, 2009. 508с. http://www.iprbookshop.ru/18438

9.3 Перечень интернет ресурсов

- 1. EqWorld Мир математических уравнений http://eqworld.ipmnet.ru/
- 2. Открытая Научная Интернет Библиотека http://lib.e- sciense.ru/
- 3. Научная электронная библиотека eLIBRARY.RU
- 4. Российское образование ФЕДЕРАЛЬНЫЙ ПОРТАЛ: http://www.edu.ru/
- 5. Сайт НеХудожественная Литература NeHudLit: http://www.nehudlit.ru/books/subcat352.html

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Учебные аудитории для лекционных и практических занятий, оборудованные компьютерной и проекционной техникой.

Компьютерный класс; лабораторная работа по построению линий тока вблизи стоков, вихрей и диполей; лабораторная работа по вычислению заданного определенного интеграла; лабораторная работа по вычисление заданной системы обыкновенных дифференциальных уравнений; лабораторная работа по расчету осевой скорости вблизи всасывающих отверстий; лабораторная работа по вычисление модуля и аргумента заданных комплексных чисел; лабораторная работа по определение осевой скорости вблизи щелевидных отсосов; определение осевой скорости вблизи щелевидных отсосов.

ПРОГРАММЫ ДЛЯ ЭВМ, основанные на использовании методов сингулярных интегральных уравнений: <u>Grohot</u>; <u>Spektr</u>

приложения

Приложение №1. Методические указания для обучающегося по освоению дисциплины (включая перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине).

Курс «Компьютерное моделирование в системах вентиляции» представляет собой дисциплину по выбору обучающегося из профессионального цикла подготовки студентов по направлению «Техносферная безопасность», направленности «Безопасность технологических процессов и производств».

Целью преподавания дисциплины является обучение студентов основным математическим моделям и численным методам решения инженерных задач на ЭВМ, возникающим при проектировании систем отопления, вентиляции и кондиционирования воздуха.

Знания численных методов и математических моделей необходимы для инженеров, работающих в области проектирования, строительства и эксплуатации систем теплогазоснабжения и вентиляции.

Изучение данной дисциплины дает знание основных методов расчета движения потенциальных течений жидкости и газа, нестационарных вихревых нестационарных течений, всасывающих факелов местной вытяжной вентиляции, прогнозирования дисперсного состава пыли, удаляемого из укрытий.

В процессе выполнения лабораторных занятий студент осваивает основы реализации математических моделей на ЭВМ и программирования различных численных методов, используемых при решении инженерных задач

Занятия проводятся в виде лекций и лабораторных занятий. Важное значение для изучения курса имеет самостоятельная работа студентов.

Формы контроля знаний студентов предполагают текущий и итоговый контроль. Текущий контроль знаний проводится в форме систематических опросов, выполнения одного РГЗ. Формой итогового контроля является зачет.

Исходный этап изучения курса предполагает ознакомление с *Рабочей программой*, характеризующей границы и содержание учебного материала, который подлежит освоению.

Изучение отдельных тем курса необходимо осуществлять в соответствии с поставленными в них целями, их значимостью, основываясь на содержании и вопросах, поставленных в лекции преподавателя и приведенных в планах и заданиях к лабораторным работам, а также методических указаниях для студентов заочного обучения.

В учебниках и справочных пособиях, представленных в списке рекомендуемой литературы содержатся возможные ответы на поставленные вопросы. Инструментами освоения учебного материала являются основные термины и понятия, составляющие категориальный аппарат дисциплины. Их осмысление, запоминание и практическое использование являются обязательным условием овладения курсом.

Для более глубокого изучения проблем курса при подготовке контрольных работ необходимо ознакомиться с публикациями в периодических изданиях. Поиск и подбор таких изданий, статей, материалов и монографий осуществляется на основе библиографических указаний и предметных каталогов.

Изучение каждой темы следует завершать выполнением практических заданий, ответами на вопросы, содержащихся в методических пособиях по курсу. Для обеспечения систематического контроля над процессом усвоения тем курса следует пользоваться перечнем контрольных вопросов для проверки знаний по дисциплине, содержащихся в планах и заданиях к лабораторным работам и методическим указаниях для студентов заочного отделения. Если при ответах на сформулированные в перечне вопросы возникнут затруднения, необходимо очередной раз вернуться к изучению соответствующей темы, либо обратиться за консультацией к преподавателю.

Успешное освоение курса дисциплины возможно лишь при систематической работе, требующей глубокого осмысления и повторения пройденного материала, поэтому необходимо делать соответствующие записи по каждой теме.

Раздел 1. Метод сеток, разностные схемы

В разделе рассматриваются: основные понятия и определения; краевая задача для уравнения Пуассона; графическое представление решения.

Термины и понятия: краевая задача, уравнения Пуассона, разностные схемы, аппроксимация.

Раздел 2. Основные разностные схемы для решения нестационарного уравнения теплопроводности.

В разделе рассматриваются: явная схема; неявная схема; решение уравнения теплопроводности с использованием явной схемы; решение уравнения теплопроводности с использованием неявной схемы.

Термины и понятия: уравнение теплопроводности, дискретный аналог, вычислительный алгоритм; явная схема; неявная схема; решение уравнения теплопроводности с использованием явной схемы; решение уравнения теплопроводности с использованием неявной схемы.

Раздел 3. Численное моделирование вихревых течений в закрытых вытяжных устройствах.

Рассматриваются: вычислительный алгоритм расчета вихревых течений в аспирационном укрытии; расчет поведения полифракционной пылевой аэрозоли, дисперсного состава и концентрации пылевых аэрозолей в аспирируемом воздухе; комбинация методов граничных интегральных уравнений и дискретных вихрей; расчет течений в многосвязных областях с вращающимися цилиндрами-отсосами.

Термины и понятия: дисперсный состав и концентрация пылевых аэрозолей, полифракционная совокупность пылевых частиц; суперпозиция дискретных вихрей и источников (стоков).

Раздел 4. Численное моделирование вихревых течений в многосвязных областях с разрезами.

Рассматриваются: вычислительный алгоритм расчета вихревых течений в многосвязных областях с разрезами; условие Томпсона неизменности циркуляции; расчет течения на входе в щелевидные неплотности аспирационных укрытий; расчет течения на предприятиях агропромышленного комплекса.

Термины и понятия: нестационарные дискретные вихри; условие Томпсона, вычислительный алгоритм расчета вихревых течений в многосвязных областях с разрезами, микроклимат в зданиях и сооружениях.

Раздел 5. Численный метод дискретных вихревых многоугольников

В разделе рассматривается: определение поля скоростей от вихревого отрезка; вихревые многоугольники; расчет вихревых течений на входе в квадратные и многоугольные всасывающие каналы; расчет экранированных вытяжных устройств; оптимизация вытяжных устройств по критерию дальнобойности.

Термины и понятия: вихревой отрезок, вихревой многоугольник, квазиосесимметричная задача, отрывная поверхность тока, размеры вихревых областей, профилирование.

Раздел 6. Метод дискретных стационарных вихрей

В разделе рассматриваются: вычислительный алгоритм расчета на входе в щелевидный и круглый всасывающие каналы при задании величины постоянной циркуляции на свободной поверхности тока; вычислительный алгоритм расчета на входе в щелевидный и круглый всасывающие каналы при средней скорости всасывания; расчет изменения к.м.с. входа в неплотности щелевидной и круглой формы при их механическом экранировании; расчет течений на входе в отсосыраструбы в неограниченном пространстве; расчет течений на входе в отсосыраструбы над непроницаемой плоскостью; расчет течений на входе в круглый всасывающий патрубок при наличии набегающего потока; расчет течений на входе в отсосыраструбы при наличии набегающего потока; задачи аспирации аэрозолей в пробоотборники; определение критических линий тока и предельных траекторий пылевых частиц, коэффициента аспирации; критерии эффективности отсоса-раструба.

Термины и понятия: стационарные дискретные вихри; отсос-раструб; отрывная поверхность тока, присоединенные вихри, свободные вихри; механическое экранирование, коэффициент аспирации, коэффициент улавливания, критерии эффективности отсоса-раструба.

8. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Утверждение рабочей программы без изменений
Рабочая программа без изменений утверждена на 2017/2018 учебный год.
Протокол № <u>11</u> заседания кафедры от « <u>24</u> » <u>05</u> 20/4г.
Заведующий кафедрой Уваров В. А.
1 colors
Директор института Уваров В.А.
// подпись, ФИО

8. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Утверждение рабочей пр	оограммы без изменений	
	изменений утверждена на 201	
Протокол № 3	аседания кафедры от « <u>11</u> »	05 2018 r.
Заведующий кафедрой_	p yper	Hapol B.H.
	подпись, ФИО	
Директор института	pylling	Hapol B. A.
	подпись, ФИО	

Утверждение рабочей программы без изменений

Рабочая программа без изм	енений утверждена на 2020/202	21 учебный год.
Протокол № <u>11</u> заседания н	кафедры от « <u>21</u> » <u>мая</u> 2020 г.	
Заведующий кафедрой	byles	В.А. Уваров
	подпись, ФИО	
Директор института	h you	В.А. Уваров
	подпись, ФИО	

Утверждение рабочей программы без изменений

	енений утверждена на 2021/209 сафедры от « <u>21</u> » <u>мая</u> 2021 г.	22 учебный год.
Заведующий кафедрой	подпись, ФИО	В.А. Уваров
Директор института	иодпись, ФИО	В.А. Уваров