МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г. Шухова)

УТВЕРЖДАЮ Директор института строительного материаловедения и техносферной безопасности В.И. Иавленко

«<u>16</u>» <u>апреля</u> 2015

<u>РАБОЧАЯ ПРОГРАММА</u> дисциплины

ХИМИЯ ВЯЖУЩИХ МАТЕРИАЛОВ

направление подготовки:

18.03.02 Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии

Направленность программы:

Рациональное использование материальных и энергетических ресурсов в химической технологии вяжущих материалов

Квалификация

бакалавр

Форма обучения

заочная

Институт: Строительного материаловедения и техносферной безопасности

Кафедра: Технологии цемента и композиционных материалов

Белгород – 2015

Рабочая программа составлена на основании требований:

- Федерального государственного образовательного стандарта высшего образования по направлению подготовки 18.03.02 Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии (уровень бакалавриата), утвержденного Приказом Министерства образования и науки Российской федерации от 12 марта 2015 г., № 227.
- плана учебного процесса БГТУ им. В.Г. Шухова, введенного в действие в 2015 году.

	/	
Составитель : к.т	.н., доц. Голов	Головизнина Т. Е.
(ученая	степень и звание, подпись)	
	рвана с выпускающей кафе, мента и композиционных маменование кафедры)	•
Заведующий кафедрой: д	д.т.н., проф (ученая степень и звание, подпись)	(И. Н. Борисов) (инициалы, фамилия)
« 14 » апреля 2015 г.		
<u> </u>		
Рабочая программа обсужд	ена на заседании кафедры	
« 14 » апреля 2015 г., прот	гокол № 10	
Заведующий кафедрой:	д.т.н., проф (ученая степень и звание, подпис	(И. Н. Борисов) ы (инициалы, фамилия)
Рабочая программа одобре	на методической комиссие	й института
« 15 » апреля 2015 г., прот	гокол № 8	

(ученая степень и звание, подпись)

(Л. А. Порожнюк)

(инициалы, фамилия)

Председатель

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

	Формируемые	компетенции	Требования к результатам обучения
№	Код компетенции	Компетенция	
		Профессион	альные
1	ПК-1	Способность осу-	В результате освоения дисциплины обучаю-
		ществлять технологи-	щийся должен
		ческий процесс в со-	Знать: основные требования регламента
		ответствии с регла-	промышленных технологических процессов
		ментом и использо-	производства вяжущих материалов.
		вать технические	Уметь: понимать и анализировать показания
		средства для измере-	промышленных средств контроля производ-
		ния основных пара-	ства вяжущих материалов.
		метров технологиче-	Владеть: знаниями о контролируемых пара-
		ского процесса,	метрах качества технологического процесса
		свойств сырья и про-	производства вяжущих материалов.
		дукции.	
2	ПК-2	Способность участво-	В результате освоения дисциплины обучаю-
		вать в совершенство-	щийся должен
		вании технологиче-	Знать: основные технологические парамет-
		ских процессов с по-	ры производства вяжущих и композицион-
		зиций энерго- и ресур-	ных материалов.
		сосбережения, мини-	Уметь: анализировать и выявлять составля-
		мизации воздействия	ющие производственно-технологического
		на окружающую сре-	процесса, требующие или позволяющие со-
		ду.	вершенствовать производство.
			Владеть: приемами минимизации топливно-
			энергетических затрат и воздействия на
			окружающую среду производства вяжущих и
			композиционных материалов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

$N_{\underline{0}}$	Наименование дисциплины (модуля)
1	Физико-химические свойства сырьевых материалов и техногенных продуктов
2	Общая химическая технология
3	Физическая химия силикатов

Содержание дисциплины служит основой для изучения следующих дисциплин:

No	Наименование дисциплины (модуля)
1	Технология производства цемента
2	Научно-исследовательская работа
3	Энергосбережение в производстве цемента

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 7 зач. единиц, 252 часа.

Вид учебной работы	Всего	Семестр
	часов	№ 7
Общая трудоемкость дисциплины, час	252	252
Контактная работа (аудиторные занятия), в т.ч.:	26	26
лекции	16	16
лабораторные	10	10
практические		
Самостоятельная работа студентов, в том числе:	226	226
Курсовой проект		
Курсовая работа	36	36
Расчетно-графическое задания		
Индивидуальное домашнее задание		
Другие виды самостоятельной работы	154	154
Форма промежуточной аттестации	экзамен	экзамен
(зачет, экзамен)	36	36

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Наименование тем, их содержание и объем Курс 4 Семестр 7

			Объем на тематически раздел по видам учебн нагрузки, час		
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятель- ная работа
Ввод	ное занятие (Установочное)				
	История развития науки и производства вяжущих материалов. Классификация вяжущих материалов. Основные признаки вяжущих веществ. Принципы классификации вяжущих материалов по основным свойствам и области применения.	2			10
1. Bo	здушные вяжущие вещества				
	Процессы, протекающие при термической обработке гипса. Условия образования, свойства модификаций гипса. Теории твердения гипсовых вяжущих. Ускорители и замедлители твердения. Известковые вяжущие. Строительная известь. Условия диссоциации CaCO ₃ , состав и свойства извести, недожог и пережог извести, особенности гидратации и твердения. Сырье для производства, два вида, основные реакции и условия синтеза магнезиальных вяжущих. Особенности твердения и затворители для магнезиальных вяжущих веществ. Свойства и применение магнезиальных вяжущих.	2		2	24
2.1 И	дравлические вяжущие вещества Портландцемент. Общая характеристика состава.				
	Определения портландцемент, портландцементный клинкер. Характеристика состава клинкера: химическая, модульная, фазовая. Клинкерные минералы, их модификации, условия стабильного существования фаз.	4		2	36
3. XV	мическая технология производства цемента		ı		
	Химические процессы, происходящие во вращающейся цементной печи. Кислотно-основное взаимодействие. Твердофазовые реакции. Химические и физические процессы, происходящие во вращающейся печи с участием жидкой фазы (расплава). Влияние примесей на процесс обжига, состав и качество клинкера.	2		4	36
4. Ги	дратация цемента и твердение цементного камня				
	Гидратация и твердение клинкерных минералов. Гидратация портландцемента. Роль добавки гипса при гидратации цемента. Влияние тонкости помола, во-	2		2	24

	<u>, </u>				
доцементного отношения, условий твер,	дения и доба-				
вок на свойства цементного камня.					
5. Управление свойствами вяжущих материал	ов. Потенциал эне	рго- ре	ecypcoc	береж	ения
при производстве вяжущих материалов.					
Значимость каждого передела производи и цемента для управления качеством про ханическая, термическая и химическая и ция процессов клинкерообразования. Упчеством клинкера с помощью модифика сификаторов. Взаимное влияние примеством клинкера. Технологические приемы, управством клинкера. Возможности использования промышле вых техногенных отходов в производств териалов в качестве сырьевых компоненнативного топлива.	одукции. Ме- интенсифика- правление ка- торов и интен- ных компо- вляющие каче- нных и быто- ве вяжущих ма-	2			12
6. Композиционные и специальные цементы					
Особенности производства и твердения тивными минеральными добавками. Шл цемент, пуццолановый цемент. Специальные (нормированные) цементь твердеющие, дорожные, тампонажные, кие, для производства асбестоцементны Алюминатные и сульфоалюминатные це Расширяющиеся и напрягающиеся цеме зиции.	акопортланд- и – быстро- сульфатостой- х изделий. ементы.	2			12
DOEEO		1.0	Г	10	151
ВСЕГО		16		10	154

4.2. Содержание практических (семинарских) занятий

Не предусмотрено учебным планом

4.3. Содержание лабораторных занятий

№	Наименование	Тема лабораторного занятия	К-во	К-во
Π/Π	раздела дисциплины		часов	часов
				CPC
		семестр № 6		
1	Воздушные вяжущие вещества	Получение строительного гипса. Расчет выхода продукта. Оптимизация энергетических затрат.	2	12
2	Гидравлические вяжу- щие вещества.	Изучение микроструктуры цементного клинкера	2	12
3	Химическая технология производства цемента	Определение титра портландцементной сырьевой смеси. Влияние характеристик сырьевой смеси на энергозатраты при обжиге клинкера.	2	12
		Определение содержания свободной извести в клинкере	2	12
4	Гидратация цемента и твердение цементного камня	Определение содержания гипса в цементе. Влияние добавки гипса на сроки схватывания цементного теста.	2	12
		ИТОГО:	10	60

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов (типовых заданий)

Вопросы для текущего контроля

Раздел дисциплины – Гипсовые вяжущие вещества.

Вопросы:

- 1. При каких температурах происходят основные реакции дегидратации двуводного гипса?
- 2. Определение гипсовых вяжущих веществ.
- 3. Формула основного сырьевого минерала для производства гипсовых вяжущих веществ. Формулы гипсовых вяжущих веществ.
- 4. Реакция гидратации низкообжиговых гипсовых вяжущих веществ.
- 5. Основные строительно-технические свойства низкообжиговых гипсовых вяжущих веществ.
- 6. На какие группы по температуре тепловой обработки делятся гипсовые вяжущие вещества.
- 7. Теоретическая и действительная водопотребность низкообжиговых гипсовых вяжущих веществ.
- 8. Основные свойства и условия службы изделий из низкообжиговых гипсовых вяжущих веществ.
 - 9. Особенности твердения низкообжиговых гипсовых вяжущих веществ.
 - 10. Особенность затворения гипсовых вяжущих веществ.
 - 11. Основные строительно-технические свойства высокообжиговых гипсовых вяжущих веществ.
- 12. В каких агрегатах тепловой обработки можно производить гипсовые вяжущие вещества? Преимущества и недостатки агрегатов.
- 13. Какова причина высокой пористости изделий из гипсовых вяжущих? Приемы, снижающие пористость и увеличивающие прочность изделий.

Раздел дисциплины — **Известковые вяжущие вещества**.

Вопросы:

- 1. Строительная воздушная известь определение. Формула основного минерала сырьевой породы, формула продукта, формула гидрата.
- 2. Заполните таблицу «Название сырьевой породы и готового продукта в зависимости от вида и количества примесей в сырье для производства извести»
 - 3. Гидравлический модуль: расчетная формула; что характеризует?
 - 4. Реакция и условия диссоциации карбоната кальция.
 - 5. Схема получения воздушной извести.
 - 6. Виды воздушной извести.
- 7. Классификация шахтных печей для обжига извести по виду топлива и способу его сжигания.
 - 8. Технологические зоны шахтной печи для обжига извести. Температурный режим.
 - 9. Недожег, как брак при обжиге извести. Причины, влияние на качество продукта.
 - 10. Пережег, как брак при обжиге извести. Причины, влияние на качество продукта.
 - 11. Две стадии гидратации СаО.
 - 12. Гидратное твердение извести.
 - 13. Карбонатное твердение извести.
 - 14. Гидросиликатное твердение извести.

Тест на проверку остаточных знаний. Пример - один вариант из 20

ФИО	•	группа
Вопрос	Варианты ответов	Правильный ответ
	неорганические порошкообразные материалы, обладающие вяжущими свойствами.	_
Рамичима рамиантра, ата	система порошок-затворитель, способная самопроизвольно образовывать конгломерат обладающий прочностью.	
Вяжущие вещества это	композиции на основе гетерогенных дисперсных систем типа твердое тело - жидкость,	
	компоненты которой вступают в физико-химическое взаимо-	
	действие, образуя пластичную массу (тесто), превращающуюся в прочное тело – камень.	
	способность композиции порошок-затворитель вступать в гидратационное взаимодей-	
Гидравлическая активность это	ствие способность твердого тела не вступать во взаимодействие с окружающей жидкостью	
	способность композиции по- рошок-затворитель образовы- вать твердый камень не рас- творимый в воде	
MgCO ₃ *CaCO ₃	сырье для производства каустического магнезита сырье для производства кау-	

	стического доломита	
	сырье для производства гид-	
	равлической извести	
Если в карбонатной кальцие-	мергелистый известняк	
вой породе содержится более	известняк (мел)	
25% глинистых примесей, она	мергель	
называется	-	
При политородите облице	строительный гипс	
При температуре обжига 1000^{0} С из CaCO ₃ получится	известь-пушонка	
1000 С из СасОз получится	известь-кипелка	
Tarrananana	до 400 ⁰ C	
Температура обжига каусти-	не выше 800° С	
ческого доломита	1000-1100 ⁰ C	
Для получения изделий из	MgCl ₂ *6H ₂ O	
магнезиальных вяжущих в ка-	NaCl	
честве затворителя использу-	MgSO ₄ *7H ₂ O	
ют раствор		
Рассчитайте ППП Al ₂ O ₃		·

Вопросы для проведения промежуточной аттестации.

- 1.Определение понятий вяжущие вещества и вяжущие свойства. Основные исторические этапы развития производства вяжущих материалов. Классификация вяжущих веществ по основным свойствам и области применения.
 - 2. Потенциал энергоресурсосбережения при производстве вяжущих материалов.
- 3. Классификация гипсовых вяжущих. Процессы, протекающие при термической обработке гипса. Модификации сернокислого кальция, их основные свойства.
- 4. Классификация гипсовых вяжущих. Производство строительного гипса. Технологические схемы производства строительного гипса, их достоинства и недостатки.
 - 5. Твердение строительного гипса. Теории твердения Ле-Шателье и Байкова.
- 6. Строительно-технические свойства строительного гипса. Ускорители и замедлители схватывания строительного гипса.
 - 7. Ангидритовый цемент и высокообжиговый гипс. Получение, свойства, применение.
- 8. Каустический магнезит. Производство, свойства, применение. Затворители для магнезиальных вяжущих веществ.
- 9. Каустический доломит. Получение, состав, свойства, применение. Затворители для магнезиальных вяжущих веществ.
- 10. Виды извести и области применения. Процессы, протекающие при термической обработке карбоната кальция.
- 12. Влияние вида и количества примесей в карбонатной породе на вид и свойства продукта обжига. Оценка области применения карбонатной породы по гидравлическому модулю.
- 13. Агрегаты для обжига извести: шахтные печи (пересыпные, газовые),вращающиеся, кипящего слоя. Влияние свойств, химического и фракционного состава сырья и режима обжига на качество извести.
- 14. Гашение извести. Аппараты применяемые для гашения извести. Факторы определяющие гашение извести. Три вида твердения воздушной извести.
- 15. Изделия на основе извести. Процессы твердения изделий на основе извести. Роль песка в известковых растворах. Гидросиликатное твердение извести.
 - 16. Гидравлическая известь. Получение, состав, свойства, применение.
 - 17. Романцемент. Получение, состав, свойства, применение.
- 18. Сырьевые материалы для производства портландцемента. Использование отходов других производств.
- 19. Портландцемент, портландцементный клинкер определения. Характеристика портландцементного клинкера по химическому составу. Допустимое содержание примесей.

- 20. Портландцемент, портландцементный клинкер определения. Модульные характеристики портландцементного клинкера, КН, их физическая интерпретация.
- 21. Фазовый состав портландцементного клинкера. Влияние каждой фазы на свойства цемента. Микроструктура клинкера.
- $22.C_3S$ (фаза алит). Состав, структура, полиморфные модификации, твердые растворы. Алит в составе клинкера.
- $23.\ C_2S$ (фаза белит). Состав, структура, полиморфные модификации, твердые растворы. Белит в составе клинкера.
 - 24. Алюминатная и алюмоферритная фазы клинкера. Состав, структура, твердые растворы.
- 25. Способы приготовления цементной сырьевой смеси, их преимущества, недостатки и технико-экономические показатели.
 - 26. Корректирование и гомогенизация состава портландцементной сырьевой смеси.
- 27. Термические превращения компонентов цементной сырьевой смеси: $CaCO_3$, глинистых минералов. Полиморфные превращения, изменение дисперсности при нагревании, термохимическая активация.
- 27. Температура материалов и газов по длине вращающейся печи при мокром способе производства.
- 29. Превращения материала по длине вращающейся печи при мокром способе производства цемента.
- 30. Процессы, протекающие при обжиге цементной сырьевой смеси без участия клинкерного расплава. Реакции в твердом состоянии.
- 31. Процессы при обжиге цементного клинкера с участием жидкой фазы (клинкерного расплава). Состав, количество и температура образования клинкерного расплава его структура и свойства. Растворения C_2S и CaO в расплаве. Образование алита.
- 32. Процессы, протекающие при охлаждении клинкера. Влияние условий охлаждения на минералогический состав клинкера и стабильность его минералов.
- 33. Влияние технологических факторов на процессы синтеза портландцементного клинкера: химического состава сырьевой смеси, дисперсности сырьевых компонентов, режима обжига, каталитических веществ: механическая, термическая и химическая активация компонентов сырьевой смеси.
 - 34. Реакции гидратации минералов-силикатов: C_3S и C_2S .
- 35. Реакции гидратации минералов-плавней: C_3A и C_4AF . Роль гипса при гидратации цемента.
 - 36. Гидратация портландцемента. Особенности совместной гидратации клинкерных фаз.
- 37. Синтез прочности цементного камня: влияние фазового состава, дисперсности цемента, температуры, добавок, В/Ц отношения.
 - 38. Механизм и периоды гидратации портландцемента.
 - 39. Виды коррозии цементного камня. Методы борьбы с коррозией.
- 40. Химия и особенности технологии белого и декоративных цементов. Факторы, повышающие белизну цемента.
- 41. Активные минеральные добавки в портландцементе, их классификация. Реакции пуццоланового типа твердения.
- 42. Особенности состава, гидратации и твердения шлакопортландцемента. Модули основности и активности шлака.
- 43. Алюминатный цемент. Состав, основные минералы, особенности синтеза. Процессы гидратации и твердения; строительно-технические свойства алюминатного (глиноземистого) цемента.
- 44. Сульфоалюминатный цемент. Состав, основные минералы, особенности синтеза. Процессы гидратации и твердения; строительно-технические свойства сульфоалюминатного цемента. Расширяющиеся и напрягающие цементы. Реакции, вызывающие расширение цементного камня, управление этим процессом.
 - 45. Специальные цементы. Особенности составов и способы управления свойствами.
 - 46. Закономерности проявления вяжущих свойств.

Типовые экзаменационные задачи:

- 1) Известно, что в составе клинкера: $SiO_2 22\%$; $Al_2O_3 6\%$; CaO 70%. n = 2,2. Рассчитать фазовый состав, КН и р клинкера. Описать свойства и возможную область применения цемента из клинкера с такими характеристиками.
- 2) Известно, что в составе клинкера: $SiO_2 23\%$; $Al_2O_3 3\%$; CaO 65%. p = 1,4. Рассчитать фазовый состав, КН и п клинкера. Описать свойства и возможную область применения цемента из клинкера с такими характеристиками.
- 3) Известно, что в составе клинкера: $SiO_2 22\%$; $Al_2O_3 4\%$; $Fe_2O_3 8\%$. КН=0,89. Рассчитать фазовый состав, n и p клинкера. Описать свойства и возможную область применения цемента из клинкера с такими характеристиками.
- 4) По данным химического анализа определите наименование материала (продукта или сырья) и его назначение для производства вяжущих веществ или изделий.

Химический состав материала

Timan tookim oootub matephana								
Рорионт	Химический состав, масс.%							
Вариант	SiO_2	Al_2O_3	Fe_2O_3	CaO	MgO	SO_3	R_2O	ппп
1	1,76	0,70	0,11	54,25	0,28	0	0	42,32
2	22,08	4,74	4,22	66,6	0,58	0,35	0	0
3	2,85	0,51	0,1	30,58	19,92	0	0	45,54
4	12,89	3,95	3,11	42,92	1,37	0	0	34,33
5	66,63	13,31	7,34	2,19	1,52	0,82	0	7,43
6	8,85	74,06	0,74	0,30	0,05	0	0,97	13,30
7	83,12	8,26	2,73	2,31	0,20	0	0	2,21
8	21	7	4,23	62,7	0,12	0,06	0,5	0
9	8,76	2,9	77,06	1,54	0,63	1,19	0	0
10	39,46	23,62	21,33	1,68	0,79	0,34	1,25	10,98
11	17,03	4,73	2,45	37,36	2,81	0,21	0,15	33,49
12	0,98	1,25	0,18	96,24	1,35	0	0	0
13	10,8	0	0,25	13,2	75,6	0,15	0	0
14	1,2	0,15	0,15	25,87	52,3	0	0	20,33

5.2. Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем.

Учебным планом предусмотрена курсовая работа.

Задачи курсового проектирования

Согласно учебному плану направления подготовки 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»; направленность программы: Рациональное использование материальных и энергетических ресурсов в химической технологии вяжущих материалов, по дисциплине «Химия вяжущих материалов» выполняется курсовая работа.

Курсовая работа должна соответствовать требованиям, предъявляемым к научной работе.

Тема курсовой работы «Энерго-ресурсосбережение в химической технологии вяжущих материалов».

Выполнение курсовой работы по дисциплине проводится с целью:

- развития способностей и умений самоорганизации и самоподготовки;
- систематизации, закрепления и применения теоретических знаний, полученных при изучении курса;
- формирования умений использования специальной, научно-технической, справочной и нормативно-технической литературы и документации;
- развития способностей обосновывать и осуществлять технологический процесс в соответствии с регламентом;
- совершенствования приемов минимизации сырьевых и топливно-энергетических затрат при производстве вяжущих материалов.

При выполнении курсовой работы студенты изучают требования, предъявляемые к качеству сырья и готовой продукции, состав и основные свойства минеральных вяжущих материалов, химические процессы, протекающие при получении и гидратации минеральных вяжущих материалов.

При разработке курсовой работы студенты пользуются технической, справочной, учебнометодической и научной литературой, государственными и отраслевыми стандартами (ГОСТ и ОСТ), техническими условиями (ТУ), знакомятся с правилами оформления пояснительной записки.

Организация работы

Руководство курсовой работой осуществляется преподавателями, назначенными кафедрой и обладающими методическим опытом и научной квалификацией.

В процессе работы студент получает у руководителя консультации, вносит по его указанию необходимые дополнения и исправления, соответствующим образом оформляет работу.

Студент является автором самостоятельной работы и отвечает за все принятые им решения.

Сроки представления выполненных работ устанавливаются кафедрой.

Курсовая работа перед сдачей на проверку должна быть подписана студентом с указанием даты написания. Работа подшивается в папку.

Готовая работа представляется преподавателю для проверки и принятия решения о допуске к защите. Если работа удовлетворяет требованиям, предъявляемым к ней, она допускается к защите. Об этом руководитель делает заключение на титульном листе курсовой работы.

В том случае, если работа подготовлена неудовлетворительно, ее возвращают студенту для соответствующей доработки. Студент обязан выполнить ее повторно в соответствии с рекомендациями, указанными руководителем, и представить на проверку вместе с предыдущей работой и замечаниями преподавателя.

Защита курсовой работы является особой формой контроля, помогает студенту получить навык публичной презентации научиться систематизировать информацию. Защита носит публичный характер и производится при непосредственном участии руководителя работы и в при-

сутствии студентов проектирующей группы.

Защита состоит из доклада студента по выполненной работе продолжительностью 5...10 минут. Доклад иллюстрируется презентацией. Необходимо изложить: тему работы; исходные данные, содержание выполненной работы и полученные результаты. После доклада студент отвечает на вопросы, заданные присутствующими преподавателями и студентами.

По результатам защиты курсовая работа, согласно действующему в университете «Положению о промежуточной и итоговой аттестациях», оценивается дифференцированной отметкой по четырехбалльной системе: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Оценка курсовой работы записывается в ведомость, составляемую в двух экземплярах, один из которых хранится в делах кафедры, другой представляется в дирекцию института. Положительная отметка записывается также в зачетную книжку за подписью руководителя курсовой работы. Защищенная работа сдается на кафедру.

В случае неудовлетворительной оценки студенту выдают новое задание для разработки. Студент, не представивший в установленный срок курсовую работу или не защитивший ее по неуважительной причине, считается имеющим академическую задолженность.

Содержание курсовой работы

Курсовая работа состоит из расчетно-пояснительной записки объемом до 40 страниц.

Курсовая работа должна включать титульный лист, задание, оглавление и содержать разделы, указанные в таблице 1.

	Таблица 1
	Объем
Номер и содержание раздела пояснительной записки	раздела,
	стр.
Введение	1 -3
1. Определение вида сырьевого материала	1-3
2. Обоснование вида вяжущего вещества	
По химическому составу обосновать вид вяжущего вещества, которое можно из-	до 7
готовить из предложенного сырья.	
3. Разработка основ разделов технологического регламента производства	
3.1 Общая характеристика производства.	
3.2 Описание характеристик материалов, сырья, реагентов, полуфабрикатов.	
3.3. Описание технологического процесса и технологической схемы производства.	
Разработать и описать принципиальную технологическую схему производства вя-	
жущего материала с указанием основных параметров производства.	
Перечислить и кратко описать основные:	до 15
- стадии изготовления вяжущего материала,	до 15
- агрегаты и оборудование для процесса производства вяжущего материала,	
3.4. Нормы режимов технологии.	
Описание	
- физико-химических процессов, протекающих в производстве;	
- основных точек контроля технологического процесса;	
- значения контролируемых параметров технологического производства.	
4. Процессы и реакции синтеза вяжущего вещества	
Описать процессы и реакции, происходящие в агрегате тепловой обработки при	до 5
синтезе вяжущего материала. Рассчитать химический и минералогический состав	до 3
вяжущего вещества, который можно получить из рассматриваемого сырья.	
5. Свойства и область применения	
На основе рассчитанного химического и минералогического составов описать	1-2
строительно-технические свойства и область применения вяжущего материала.	
6. Выводы по работе	1-2
Список использованной литературы	

Содержание пояснительной записки

Введение.

В этом разделе отражается современное состояние промышленности производство вяжущих веществ; обосновывается необходимость расширения ассортимента и выпуск специальных видов минеральных вяжущих материалов.

Минеральные вяжущие – это тонко измельчённые минеральные порошки, образующие при смешивании с водой пластичную массу, которая с течением времени под влиянием физико-химических процессов переходит в камневидное состояние. Это свойство вяжущих используют для получения искусственных каменных материалов.

Различают две группы минеральных вяжущих: *воздушные*, которые после перемешивания с водой способны твердеть, сохранять и повышать свою прочность только на воздухе (гипсовые вяжущие, воздушная известь, магнезиальные вяжущие), и *гидравлические*, которые после затворения водой и предварительного твердения, способны сохранять и повышать свою прочность не только на воздухе, но и в воде. К гидравлическим вяжущим относятся цементы, гидравлическая известь, романцемент и композиции на их основе.

Определение вида сырьевого материала

В разделе необходимо по заданному химическому составу определить вид сырья, описать предположительный минералогический состав, породообразующий минерал или вид техногенного отхода.

Сырьем называют вещество природного или техногенного происхождения, используемое для производства промышленной продукции.

Основное требование к сырьевым материалам заключается в том, что в сырье должны содержаться соединения, обеспечивающие химический состав вяжущего материала. Так же немаловажно, что бы в сырьевые компоненты не входили составляющие, оказывающие отрицательное влияние на технологический процесс производства вяжущего материала или на свойства готовой продукции.

Для получения минеральных вяжущих используют следующие природные и техногенные вещества.

Природный гипс — светлая, иногда окрашенная примесями в серые или желтоватые цвета горная порода. Реже применяют безводный гипс — ангидрит, а также гипсосодержащие отходы химической промышленности — цитрогипс, фосфогипс.

При производстве извести используют горные породы, состоящие в основном из карбоната кальция. Цвет известковых пород зависит от примесей: чистые известняки обычно белого цвета, примеси окрашивают их в желтоватые, бурые, серые и даже чёрные тона.

Природные магнезиты и доломиты – основное сырьё для производства магнезиальных вяжущих.

Для получения портландцемента – основного гидравлического вяжущего – чаще всего используют кальциевые карбонатные породы, глины и корректирующие добавки (с которыми вводятся недостающие компоненты).

Шлаками называют побочные продукты, получаемые при плавке черных и цветных металлов, сжигании твердых видов топлива.

Шлаки металлургической промышленности по химическому составу отличаются от портландцементного клинкера лишь соотношением некоторых компонентов. Но, в зависимости от способа охлаждения могут обладать и не обладать латентной гидравлической активностью. Исходя из этого свойства, шлаки целесообразно использовать либо как сырьевой компонент, уже прошедший тепловую обработку либо как добавку к портландцементу, замещающую часть клинкера. Использование шлака в качестве компонента сырьевой смеси вызывает снижение расхода топлива, добавка шлака к готовому клинкеру дает еще более значительную экономию топлива, так как шлак не требует обжига, а поступает в помол после сушки. В итоге себестоимость шлакопортландцемента ниже, чем портландцемента.

Золы и шлаки, образовавшиеся в результате сжигания твердых видов топлива, применяются

в зависимости от химического состава, который в свою очередь зависит от состава сожженного топлива. Золы и шлаки с высоким содержанием оксида кальция обладают вяжущими свойствами и могут быть использованы для изготовления композиционных материалов. Золы с высоким содержанием оксида кремния можно использовать как кремнийсодержащую добавку к цементной сырьевой смеси или к вяжущей композиции. Высокое содержание Al_2O_3 и SiO_2 позволяет применять золу, как альтернативу глинистому компоненту.

Обоснование вида вяжущего вещества

Этот раздел курсовой работы требует творческого и даже креативного подхода. В разделе необходимо обосновать выбор вяжущего вещества, которое можно произвести из сырьевого материала заданного состава. Для определения вида вяжущего вещества, необходимо знать, прежде всего, химический состав готового продукта. Но, это не всегда является достаточным. Следует учитывать влияние всех химических составляющих сырьевого компонента, как на технологический процесс производства, так и на свойства готового вяжущего продукта.

Если считаете, что есть необходимость в добавках, следует пояснить принцип выбора сырьевого материала, а лучше техногенного отхода в качестве добавки, с указанием химического состава и ориентировочного количества добавок в процентах от основного сырья. Добавки не должны значительно удорожать продукт или усложнять технологическую схему производства. Можно обосновать потребность в новом виде вяжущего вещества, которое принципиально (теоретически) может быть произведено из заданного Вам сырья. В этом случае будет уместно доказать наличие вяжущих свойств у продукта.

Выбирая вид вяжущего материала, предлагаемого к производству, следует учитывать потребность в этом виде вяжущего, соответствие его свойств современным требованиям рынка, технологичность. Если из сырьевого материала можно произвести несколько видов вяжущих веществ, Вам придется обосновать свой выбор. Вы так же можете предложить к производству безобжиговые материалы или производство добавок, улучшающих или придающих новые свойства вяжущим композициям.

Принципиальная схема и технологические параметры производства

Технологическая схема производства — это графическое изображение, а затем описание последовательности технологических операций (процессов) и соответствующих им аппаратов, необходимых для преобразования сырья в готовую продукцию.

Для понимания сути технологических процессов и их взаимосвязи, необходимо составить принципиальную технологическую схему двух видов.

Схема №1. Операционная (постадийная) технологическая схема в виде последовательных условных обозначений соединенных между собой операций (стадий) технологического процесса производства вяжущего материала - дробление, помол, сушка, обжиг, охлаждение и т.д.

Схема № 2. **Аппаратная технологическая схема.** Графическая технологическая схема в виде последовательных, схематических, условных изображений связанных между основных технологических агрегатов (без указания количества). На аппаратной схеме необходимо обозначить параметры технологического режима (давление, температура и т.п.) и места ввода в технологический процесс сырья, добавок, вспомогательных веществ, выхода из процесса готовой продукции, побочных продуктов и отходов производства.

Далее необходимо дать подробное описание принципиальной технологической схемы. В описании обязательна информация о физико-химической сути процессов, которые протекают в производстве.

Не стоит использовать устаревшие, хорошо известные схемы и оборудование. Курсовая работа не является официальным проектом, по которому будет построен завод. В работе студентам рекомендуется проявлять свои способности нестандартного мышления, применения смежных знаний в профессиональной области. Технологическую схему рекомендуется составить из новейшего оборудования, используя последние научные разработки, позволяющие применять

как сырье техногенные продукты, проводить обжиг с использованием альтернативных видов топлива, экономить топливно-энергетические ресурсы. Если Вы предлагаете особые, новаторские решения, рекомендуется акцентировать на этом внимание, например, посвятить этому вопросу отдельный раздел курсовой работы.

Процессы и реакции синтеза вяжущего вещества

Основной по значимости раздел курсовой работы.

- 1. Необходимо последовательно записать и описать все химические процессы и реакции, которые будут происходить при синтезе выбранного Вами вяжущего материала. Обозначить условия протекания реакций. Определить процессы, способствующие интенсификации производства вяжущего материала с точки зрения энерго-ресурсосбережения. Обозначить, какими стадиями подготовки сырьевых компонентов обеспечивается синтез и активность вяжущего материала. Указать оптимальные параметры синтеза с точки зрения гидравлической или гидратационной активности вяжущего материала и с позиции энерго-ресурсосбережения при производстве.
- 2. Описать оптимальный химический и минералогический состав предлагаемого к производству вяжущего материала.
- 3. Рассчитать химический и минералогический состав вяжущего вещества, который можно получить из рассматриваемого (заданного) сырья. Сравнить полученные значения с оптимальными.

Свойства и область применения

Основываясь на данных рассчитанного химического и минералогического составов, сопоставляя полученные значения с требованиями стандартов, предъявляемых к рассматриваемому вяжущему материалу, определить строительно-технические свойства и область применения вяжущего вещества.

Выводы по работе

В этом разделе необходимо обобщить наиболее значимые с Вашей точки зрения результаты работы. Описать достоинства и преимущества предложенных Вами инноваций. Подчеркнуть, как это повлияет на себестоимость, технологичность и экологичность производства вяжущего материала. Какие особенности технологии или вяжущего материала будут экономически выгоды для производителя и привлекут внимание потребителя.

Приложение

Химический состав сырьевого материала

Вариант	Химический состав, масс.%									
	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	SO ₃	R ₂ O	ппп		
1	1,76	0,70	0,11	54,25	0,28	0	0	42,32		
2	2,85	0,51	0,1	30,58	19,92	0	0	45,54		
3	12,89	3,95	3,11	42,92	1,37	0	0	34,33		
4	0,49	0,02	0,03	32,80	0,47	46,65	0	19,5		
5	36,94	30,49	9,84	3,35	0,74	0,36	1,28	14,45		
6	96,17	2,24	0,24	0	0,15	0	0	0,51		
7	8,76	2,9	77,06	1,54	0,63	1,19	0	0		
8	29,9	3,71	4,01	54,85	1,47	0,37	0.8	3,25		
9	17,03	4,73	2,45	37,36	2,81	0,21	0,15	33,49		
10	53,12	16,96	10,89	2,69	0,98	2,97	0,14	11,64		
11*	0,02	0,02	0,02	13,42	0	7,99	48,55	23,76		
12	38,88	7,43	0,8	42,87	8,7	0,8	0,52	0		
13	38,72	7,04	0,43	46,90	5,83	0,22	0,86	-		
14	23,86	5,80	19,21	45,43	-	_	-	5,70		
15	64,28	24,79	0,60	0,00	0,00	0,08	0,0	10,25		
16										

17*	0,23	0,32	0,35	36,09	0,01	51,24	0,08+*1,44 P ₂ O ₅	10,24
18	46,89	26,34	8,15	12,36	4,90	0,95	0,00	0,41
19	2,72	1,08	0,57	52,67	1,32	0,09	0	41,85
20	0,64	0	0,31	4,49	60,59	0	0	31,37
21	2,89	0,64	0,61	31,55	18,70	0,4	0	45,05
22	11,19	3,04	1,43	45,24	1,20	0,21	0,53	36,38
23	60,75	14,86	6,19	2,79	1,52	0,56	2,01	8,96
24	43,81	12,27	6,4	20,07	4,98	0,64	0	11,83
25	51,54	14,19	7,74	6,84	1,33	3,20	-	11,69

Пояснительная записка должна быть набрана на компьютере или написана на одной стороне листа бумаги грамотно, аккуратно, разборчиво и отличаться краткостью и ясностью изложения. В расчетной части должны быть приведены все формулы с указанием размерности в международной системе единиц. По тексту пояснительной записки в соответствующих местах необходимо делать ссылки на использованную литературу, таблицы, рисунки и формулы, которые должны иметь номера и названия.

Курсовая работа перед сдачей ее на кафедру должна быть подписана студентом с указанием даты написания. Работа брошюруется.

Готовая работа представляется преподавателю для проверки и принятия решения о допуске к защите. Работа должна быть проверена руководителем в семидневный срок после получения на проверку. Если работа удовлетворяет требованиям, предъявляемым к ней, она допускается к защите, если работа подготовлена неудовлетворительно, ее возвращают студенту для соответствующей доработки.

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

1. **Классен, В. К.** Технология и оптимизация производства цемента [Электронный ресурс] : краткий курс лекций : учеб. пособие для студентов вузов, обучающихся по направлению подгот. Хим. технология / В. К. Классен ; БГТУ им. В. Г. Шухова. - Электрон. текстовые дан. - Белгород : Изд-во БГТУ им. В. Г. Шухова, 2012. - 308 с. - **ISBN** 978-5-361-00167-5 Э.Р. N 2277

https://elib.bstu.ru/Reader/Book/2015013113471375400000659695

- **2. Классен, В. К.** Техногенные материалы в производстве цемента [Электронный ресурс] : монография / В. К. Классен, И. Н. Борисов, В. Е. Мануйлов ; под общ. ред. В. К. Классена. Электрон. текстовые дан. Белгород : Изд-во БГТУ им. В. Г. Шухова, 2008. Э.Р. N 2347
- 3. <u>Классен, В. К.</u> Обжиг цементного клинкера / В. К. Классен. Красноярск : Стройиздат, 1994. 323 с. **ISBN** 5-274-01542-
- 5 https://elib.bstu.ru/Reader/Book/2017022716365631100000654525
- 4. **Лугинина И.Г**. Химия и химическая технология неорганических вяжущих материалов. Белгород: Изд-во БГТУ им. В.Г.Шухова, 2004. Ч. 1– 240 с.; Ч. 2– 198с.

https://elib.bstu.ru/Reader/Book/2016121714551124000000656765 https://elib.bstu.ru/Reader/Book/2016121714002558900000654627

6.2. Перечень дополнительной литературы

- 1. Бутт Ю.М., Сычев М.М., Тимашев В.В. Химическая технология вяжущих материалов.-М.:Высш.школа, 1980.-472 с.
 - 2. Тейлор Х. Химия цемента / Пер. с англ. М.: Мир, 1996. 560 с.
 - 3. Отраслевые отечественные и зарубежные журналы «Цемент и его применение», «Техника и технология силикатных материалов», «Строительные материалы». «ZEMENT KALK GIPS», «ZEMENT International».

6.3. Перечень интернет ресурсов

1. Сборники и базы нормативных и технических документов www.snip.ru http://www.tmvt.ru/help/help-tsement.html http://docs.cntd.ru/

2. Электронный читальный зал https://elib.bstu.ru/

Содержит полные тексты учебных и учебно-методических пособий, монографий, авторами которых являются преподаватели университета; учебных и учебно-методических изданий, приобретенных во внешних издательствах и книготорговых организациях; редких и ценных изданий из фонда научно-технической библиотеки. Доступ к электронному читальному залу осуществляется с компьютеров локальной сети университета и сети Интернет

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕС-ПЕЧЕНИЕ

Лекционные занятия проводятся в специально оборудованных учебных аудиториях, 103 УК2, оснащенной мультимедийным комплексом и 212 УК2, оснащенной мультимедийным комплексом и 12 компьютерами.

Лабораторные занятия проводятся в специализированных учебных и научноисследовательских лабораториях.

- Лаборатория обжига и физико-механических испытаний, 109 УК2, оснащенная оборудованием: электропечь Thermoceramics; электропечь камерная СНОЛ - 2 шт; электрошкаф сушильный СНОЛ - 2 шт; вакуумсушильный шкаф ГЗВ; прессовое оборудование.
- Лаборатория микроскопических исследований, 106 УК2, оснащенная оборудованием: Микроскоп Carl Zeiss Jena NU2; система пропобоподготовки Minitom; микроскоп стереоскопический МБС-10; поляризационно-интерференционный микроскоп BIOLAR PI.
- Помольное отделение, подвальное помещение под 109 УК2, оснащенное оборудованием: прибор для определения тонкости помола цемента СММ; механическое сито; щековая дробилка; мельница 2-х камерная МБЛ.
- Лаборатория химических анализов, 110 УК2, оснащенная оборудованием: установка по изучению свойств воздушной строительной извести; установка по определению содержания свободной извести в клинкере; интерференционно-поляризационный микрскоп МРІ 5; поляризационный микроскоп МИН-8; электропечь камерная СНОЛ

Самостоятельная подготовка студентов может проходить в зале курсового и дипломного проектирования в учебной аудитории 212 УК2, оснащенной 12 компьютерами; в библиотеке кафедры ТЦКМ 119-а УК2, в которой собраны периодические издания по специальности за 15 лет, учебники, учебные пособия, справочники, электронные пособия.

Для учебной и самостоятельной работы по дисциплине «Химия вяжущих материалов» студенты используют информационное и программное обеспечение БГТУ им. В. Г. Шухова и кафедры Технологии цемента и композиционных материалов. Стандартным программным обеспечением: Microsoft Office, Adobe Photoshop, Corel Draw оснащены все компьютеры учебных и практических аудиторий кафедры ТЦКМ.

В распоряжении студентов специализированное программное обеспечение: **Difwin** – программа для обработки результатов рентгенофазового анализа;

Seavch-Match – программа для расшифровки рентгенофазового анализа;

ToniCal Trio – программа для обработки результатов калориметрического анализа;

Sihcta, ROCS – программы для расчета цементных сырьевых смесей.

Рабочая программа без изменений утверждена на 2016/2017 учебный год. Протокол № 1 заседания кафедры от «8 » сентября 2016 г.

Заведующий кафедрой

Директор института

Борисов И. Н. Павленко В.И.

Рабочая программа без изменений утверждена на 2017/2018 учебный год. Протокол № 2 заседания кафедры от «7 » сентября 2017 г.

Заведующий кафедрой

ррессе Павленко В.И.

Борисов И. Н.

Директор института

Утверждение рабочей программы без изменений Рабочая программа без изменений утверждена на 2018/2019 учебный год. Протокол № 13 заседания кафедры от «15 » мая 2018 г.

Заведующий кафедрой

Директор института

Борисов И. Н.

ррессе Павленко В.И.

Рабочая программа без изменений утверждена на 2019/2020 учебный год.

Протокол № 16 заседания кафедры от «07 » июня 2019 г.

Заведующий кафедрой

Директор института

Борисов И. Н.

рревес Павленко В.И.

Рабочая программа без изменений утверждена на 2020/2021 учебный год.

Протокол № 17 заседания кафедры от «13» мая 2020 г.

Заведующий кафедрой

Директор института

Борисов И. Н.

дребес Павленко В.И.

ПРИЛОЖЕНИЯ

Приложение №1. Методические указания для обучающегося по освоению дисциплины «Химия вяжущих материалов»

Дисциплина относится к блоку дисциплин профессионального цикла (Б1. Б3.ВВ. 06) учебного плана и является неотъемлемой частью подготовки бакалавров по направлению 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии», направленность программы : «Рациональное использование материальных и энергетических ресурсов в химической технологии вяжущих материалов»

Кроме основного учебника студентам следует пользоваться дополнительной литературой и журналами «Строительные материалы», «Цемент и его применение», «Вестник БГТУ им. В. Г. Шухова», «Техника и технология силикатных материалов», «ZEMENT - KALK – GIPS», «ZEMENT International» а также специализированными учебными пособиями. В них излагаются дополнительные сведения к теоретическому курсу и последние данные о современных достижениях науки и производства в промышленности строительных материалов в нашей стране и за рубежом. Новейшую информацию можно искать и в информационной сети, но относиться к таким материалам следует с осторожностью.

Каждый раздел курса посвящен группе сходных строительных материалов. После проработки соответствующего раздела рекомендуется самостоятельно обобщить материал по разделу. В случае возникновения вопросов и сомнений, следует уточнить по учебнику или другой литературе, проконсультироваться у ведущего преподавателя, так как последующие вопросы часто исходят из предыдущих ответов. В ходе прослушивания лекций студентам рекомендуется определения, формулы, схемы, расчеты излагать в письменном виде, что помогает усвоению и правильному изучению темы.

Изучение отдельных разделов дисциплины «Химия вяжущих материалов», завершается выполнением контрольных или тестовых заданий. Задания предусмотрены не только для контроля и проверки знаний, но и для выявления тем, вызвавших затруднения у студентов и требующих дополнительных разъяснений.

Кроме теоретических знаний студент должен получать в практические навыки. Для этого предусмотрены лабораторные работы. Студент выполняет лабораторные работы самостоятельно, но под наблюдением инженера. С этой целью по установленному расписанию студенты приходя в лабораторию, для лучшего усвоения материала выполняют на одном занятии, как правило, не более одной лабораторной работы. Форму и характер учебных занятий в лаборатории уточняет преподаватель; посещение этих занятий обязательно. При проведении групповых занятий в лаборатории студенты используют пособия по лабораторному практикуму, однако, основные пояснения по выполнению работ они получают от преподавателя. При выполнении лабораторных работ студент предварительно тщательно изучает порядок и содержание выполняемой работы по методическим указаниям. К каждой лабораторной работе студент готовится самостоятельно и оформляет ее согласно требованиям, в личном лабораторном журнале. Допуск к работе студент получает у ведущего преподавателя. Выполнение лабораторной работы контролируется инженером. Отметку о выполнении работы ставит инженер в рабочий журнал студента. Каждая лабораторная работа защищается.

Студент, получивший зачеты по лабораторным работам и выполнивший успешно все контрольные задания, допускается к экзамену.

Рабочая программа без изменений утверждена на 2021 / 2022 учебный год.

Протокол № <u>19</u> заседания кафедры от «<u>14</u> » мая <u>2021</u> г.

Заведующий кафедрой

И.Н. Борисов

Директор института

Р.Н. Ястребинский