МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

УТВЕРЖДАЮ

Директор архитектурно-строительного

института

Уваров В.А.

(28 » / elubapil-2016 1

РАБОЧАЯ ПРОГРАММА

дисциплины

Приборы и методы исследований в материаловедении

Направление подготовки:

22.03.01 Материаловедение и технологии материалов

Профиль подготовки:

Материаловедение и технологии конструкционных и специальных материалов

Квалификация

бакалавр

Форма обучения

очная

Институт: архитектурно-строительный

Кафедра: материаловедения и технологии материалов

Белгород - 2016

Рабочая программа составлена на основании требований:

•Федерального государственного образовательного стандарта высшего образования по направлению подготовки 22.03.01 Материаловедение и технологии материалов, утвержденного приказом Министерства образования и науки РФ №1331 от 12 ноября 2015 г.;

■плана учебного процесса БГТУ им. В.Г. Шухова, введенного в действие в 2016 году.

Составитель (составители): $\underline{\text{д.т.н., проф.}}$ В.В. Строкова к.т.н. П.С. Баскаков	
Рабочая программа согласована с выпускающей кафедриаловедения и технологии материалов Заведующий кафедрой: д.т.н., проф. «	•
Рабочая программа обсуждена на заседании кафедры «	a
Рабочая программа одобрена методической комиссией института « 28 » шиварие 2016 г., протокол № 6 Председатель: к.т.н., доц. А.Ю. Феоктистов	
тродоодитоль. <u>к.т.н., доц.</u>	

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

	Формируемые компетенции		Требования к результатам обучения	
№	Код компетенции	Компетенция		
	Профессиональные			
1	ПК-14	Готовность	В результате освоения дисциплины	
		использовать	обучающийся должен	
		технические средства	Знать:	
		измерения и контроля,	– базовые представления о принципах работы	
		необходимые при	технических средств измерений и контроля,	
		стандартизации и	испытательного оборудования и приборов;	
		сертификации	– основы физико-механических, физических,	
		материалов и	инструментальных и статистических методов	
		процессах их	исследования материалов;	
		получения,	– основы физических и химических	
		испытательного и	процессов, протекающих в материалах при их получении, обработке и модификации.	
		производственного оборудования.	получении, обработке и модификации. Уметь:	
			 использовать имеющийся аналитический 	
			инструментарий для подготовки и	
			исследования материалов, а также контроля	
			при стандартизации и сертификации;	
			– решать математические, физические и	
			химические задачи различными численными	
			методами;	
			– выполнять графическое отображение	
			экспериментальных результатов;	
			 применять методы исследования материалов на практике; 	
			– использовать на практике знания о физико-	
			химических процессах в различных	
			материалах, методах и приборах для их	
			исследования.	
			Владеть:	
			навыками использования в	
			профессиональной деятельности методов	
			исследования, анализа, диагностики и	
			моделирования свойств материалов,	
			физических и химических процессах,	
			протекающих в материалах при их	
			получении, обработке и модификации	
			 навыками применения в профессиональной 	
			деятельности знаний о подходах и методах	
			получения результатов в теоретических и	
			экспериментальных исследованиях.	
			– навыками обработки данных, полученных с	
			помощью современной аналитической и	
			материально-технической базы и их анализа;	
			– навыками проведения исследований и	
			расчетов в соответствии с общепризнанными и стандартными методиками исследования	
			материалов.	
			маториалов.	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

№	Наименование дисциплины (модуля)
1	Физика
2	Химия (органическая, неорганическая, физическая)
3	Математика
4	Основы и методы научных исследований

Содержание дисциплины служит основой для изучения следующих дисциплин:

No	Наименование дисциплины (модуля)
1	Композиционные материалы конструкционного и специального назначения
2	Методы неразрушающего контроля в материаловедении
3	Научно-исследовательская работа

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 3 зач. единиц, 180 часов.

Вид учебной работы	Всего	Семестр
	часов	№ 5
Общая трудоемкость дисциплины, час	180	180
Контактная работа (аудиторные занятия), в т.ч.:	85	85
лекции	34	34
лабораторные	34	34
практические	17	17
Самостоятельная работа студентов, в том числе:	95	95
Курсовой проект		
Курсовая работа		
Расчетно-графическое задания		
Индивидуальное домашнее задание	9	9
Другие виды самостоятельной работы	86	86
Форма промежуточная аттестация (зачет, экзамен)	3	3

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 4.1 Наименование тем, их содержание и объем Курс 3 Семестр 5

№ п/п	Наименование раздела (краткое содержание)	Объем на тематический раздел по видам учебной нагрузки, час
-----------------	--	---

		ı	1		
		Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа
1.	Введение к дисциплине «Приборы и методы исследований	й в мате	ериалог	ведении	1>>
	Введение. Цель, задачи и содержание курса «Приборы и методы исследований в материаловедении». Классификация методов исследования материалов	2	4	5	12
2.	Пробоподготовка и исследование механических свойств т	вердых	матер	иалов	
	Получение и подготовка образцов для исследования. Анализ реальных веществ. Основные этапы анализа. Исследование прочностных свойств материалов. Определение твердости.	4	•	4	6
3.	Микроскопические методы исследования материалов				
	Классификация микроскопических методов анализа материалов. Оптическая микроскопия. Электронная микроскопия. Зондовая микроскопия. Рентгеновская микроскопия. Виды микроскопов, их характеристики возможности.	4	3	4	6
4.	Спектроскопия – метод исследования материалов	l			
	Виды спектроскопии. Приборы, позволяющие реализовать данный метод, их особенности. Качественный и количественный анализ ИК-спектров. Спектрофотометрия. Определение кислотно-основных центров Льюиса и Бренстеда.	8	3	4	10
5.	Порометрия – метод исследования материалов				
<u> </u>	Основные методы порометрии. Адсорбционный анализ. Изотермы адсорбции. Метод БЭТ. Приборы серии Sorbi.	4		4	6
6.	Анализ дисперсности материалов Гранулометрический анализ. Лазерная гранулометрия. Методы определения удельной поверхности. Средний размер частиц. Приборная база.	4	3		6
7.	Термодинамика поверхности материалов Термодинамика поверхности. Определение краевого угла смачивания. Энергетическое состояние материалов. Прибор KRUSS Easy Drop. Метод ОВРК. Зисмана.	4	7	8	14
8.	Рентгеновские методы анализа				
	Сущность метода рентгенофазового анализа. Сборники дифракционных данных и работа с ними. Рентгеновские дифрактометры. Установка ARL9900 Intellipower Workstation.	4		5	8
	DCEEO	2.4	17	24	(0
	ВСЕГО	34	17	34	68

4.2. Содержание практических (семинарских) занятий

No	Наименование	Тема практического (семинарского)	К-во	К-во
Π/Π	раздела дисциплины	занятия	ауд.	часов
			часов	CPC

№	Наименование	Тема практического (семинарского)	К-во	К-во
Π/Π	раздела дисциплины	занятия	ауд.	часов
			часов	CPC
		семестр №5		
1	Введение к	Математическое планирование	4	4
	дисциплине	четырехфакторного эксперимента.		
2	Микроскопические	Оптическая микроскопия. Оценка	3	3
	методы исследования	размеров частиц и погрешностей метода.		
	материалов			
3	Спектроскопия –	Спектрофотометрия. Определение	3	3
	метод исследования	размеров частиц методом		
	материалов	турбодиметрии (спектра мутности)		
4	Термодинамика	Оценка энергетического состояния	3	3
	поверхности	материалов методом ОВРК.		
	материалов			
5	Термодинамика	Реология. Оценка модели	4	4
	поверхности	реологического поведения.		
	материалов			
		ИТОГО:	17	17
			ВСЕГО:	34

4.3. Содержание лабораторных занятий

$N_{\underline{0}}$	Наименование	Тема лабораторного занятия	К-во	К-во
Π/Π	раздела дисциплины		лекц.	часов
			часов	CPC
		семестр №5		
1	Введение к	Принцип действия и устройство	5	5
	дисциплине	центрифуги LISTON C 2203		
2	Пробоподготовка и	Принцип действия и устройство	4	4
	исследование	твердомера ТР 5014		
	механических свойств			
	материалов			
3	Микроскопические	Исследование объектов с	4	4
	методы исследования	использованием металлографических		
	материалов	инвертированных микроскопов.		
4	Спектроскопия –	Принцип действия и устройство	4	4
	метод исследования	спектрофотометра LEKI SS1207		
	материалов			
5	Порометрия – метод	Принцип действия и устройство	4	4
	исследования	приборов для измерения текстурных		
	материалов	характеристик материалов серии Sorbi		
6	Термодинамика	Принцип действия и устройство прибора	4	4
	поверхности	для определения краевого угла		
	материалов	смачивания KRUSS EASY DROP DSA-3		
7	Термодинамика	Принцип действия и устройство прибора	4	4
	поверхности	для определения поверхностного		
	материалов	натяжения тензиометр KRUSS K100.		
8	Рентгеновские методы	Принцип действия и устройство	5	5
	анализа	ARL9900 INTELLIPOWER		
		WORKSTATION		
		ИТОГО:	34	34
			ВСЕГО:	68

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов (типовых заданий)

№	Наименование раздела дисциплины	Содержание вопросов (типовых заданий)
п/п	раздела дисциплины	
1	Введение к дисциплине «Приборы и методы исследований в материаловедении»	 Что понимают под «методами исследований». Назовите цели и задачи дисциплины «Приборы и методы исследований в материаловедении». Общая классификация методов исследования материалов Укажите основные требования, предоставляемые к различным методам исследований. Какие конкретно методы будут рассмотрены в курсе данной дисциплины.
2	Пробоподготовка и исследование механических свойств материалов	 Особенности пробоотбора и пробоподготовки. Понятие маскирования и группы маскирующих реагентов. Метод отбора представительной пробы. Изготовление образцов для механических испытаний. Методы измерения твердости: определение твердости по Виккерсу, Роквеллу, Бринеллю, Кнуппу
3	Микроскопические методы исследования материалов.	 Понятие о микроскопии. Перечислите основные виды микроскопии. Оптическая микроскопия, ее особенности. Принцип устройства оптических микроскопов. Электронная микроскопия, ее особенности. Виды электронной микроскопии. Принцип устройства электронного растрового микроскопа. Зондовая микроскопия, ее особенности. Какие материалы применимы для исследования с помощью зондовой микроскопии. Рентгеновская микроскопия, ее особенности. Основные структурные уровни. Сопоставить с возможностями современной микроскопии.
4	Спектроскопия – метод исследования материалов	 Понятие о спектроскопии. Виды спектроскопии. Общая характеристика атомной спектроскопии. Общая характеристика молекулярной спектроскопии. Реализация метода ИК-спектроскопии. Как производится качественный и количественный анализ по средствам спектроскопии. Понятие о спектрофометрии. Принцип работы спектрофотометра. Что позволяет определить кривая Геллера. Методика определения размера частиц при обработке данных спектрофотометра. Методика определения активности различных материалов путем оценки кислотно-основных центров Льюиса и Бренстеда.
5	Порометрия — метод исследования материалов	1. Понятие о порометрии. 2. Аппаратная база данного метода. 3. Какие характеристики определяются с помощью азотной

№ п/п	Наименование раздела дисциплины	Содержание вопросов (типовых заданий)
		порометрии. 4. Представьте классификацию параметров пористой структуры материалов.
		5. Перечислите разрушающие и неразрушающие методы контроля пористости.6. Понятие о ртутной порометрии.
		7. Принцип работы приборов серии Sorbi. Требования к материалам.
		8. Понятие об изотермах адсорбции. 9. Метод БЭТ. Особенности метода.
6	Анализ дисперсности материалов	1. Что такое дисперсность. 2. Какими способами осуществляется определение гранулометрии?
		3. Особенности лазерной гранулометрии. 4. Особенности лазерного анализатора размеров частиц
		ANALYSETTE 22 NANOTEC PLUS. 5. Дайте определение удельной поверхности, пористости.
		6. Приборная база для определения удельной поверхности. 7. Определение удельной поверхности на приборе ПСХ.
7	Термодинамика поверхности	1. Назовите критерии оценки энергетического состояния поверхности материалов.
	материалов	2. Дайте определение «энергия атомизации» и «изобарно- изотермический потенциал».
		3. Представьте схему межмолекулярных взаимодействий в
		объеме жидкости и на поверхности раздела фаз «жидкость –
		газ». 4. По какой формуле рассчитывается изменение изобарно-
		изотермического потенциала. 5. Понятие о поверхностном натяжении, его составляющие.
		 Определение понятия «краевой угол смачивания».
		7. Виды материалов в зависимости от отношения к воде.
		8. Представьте информацию об эффекте лотоса. 9. Какие методы определения свободной энергии поверхности
		существуют? 10. Устройство прибора KRUSS Easy Drop DSA-30. Его
		назначение.
		 Опишите метод ОВРК. Опишите метод Зисмана.
8	Рентгеновские методы	1. В чем заключается сущность рентгеновских методов
	анализа	анализа? 2. Что такое дифракционная картина?
		2. Что такое дифракционная картина? 3. Как идентифицировать полученную дифрактограмму?
		4. Какие программы используют для обработки полученных дифрактограмм?
		5. Какие требования предъявляются к образцам при
		проведении рентгенофазового анализа? 6. Способы приготовления образов для получения
		рентгенограмм?

5.2. Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем.

5.3. Перечень индивидуальных домашних заданий, расчетно-графических заданий.

Индивидуальное домашние задание предполагает работу студента, каждый по своему индивидуальному варианту. Предложено задание по следующей тематике: «Спектроскопия — метод исследования материалов» с исходными данными, индивидуальными для студента.

Задание. Определить кислотно-основные характеристики поверхности минеральных порошков (опока, трепел, зола). Построить кривую распределения кислотно-основных центров на поверхности минеральных порошков в координатах $q_{pKa}^{\ X} = f(pKa^X)$.

5.4. Перечень контрольных работ.

Не предусмотрено.

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

- 1. Строкова В.В., Агеева М.С., Нелюбова В.В., Ващилин В.С. Методы и приборы научных исследований: лабораторный практикум: учеб. пособие. Белгород: Изд-во БГТУ, 2015. 84 с.
- 2. Латышенко К.П. Методы исследований процессов и материалов [Электронный ресурс]: лабораторный практикум. Саратов: Вузовское образование, 2013. 197 с. Режим доступа: http://www.iprbookshop.ru/20394.
- 3. Каныгина О.Н., Четверикова А.Г., Бердинский В.Л Физические методы исследования веществ [Электронный ресурс]: учебное пособие. Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2014. 141 с. Режим доступа: http://www.iprbookshop.ru/33663.
- 4. Строкова В.В., Череватова А.В., Фомина Е.В., Бондаренко А.И. Реология дисперсных систем: методические указания. Белгород: Издательство БГТУ, 2011. 33 с.
- 5. Айзенштадт А.М., Фролова М.А., Тутыгин А.С. Основы термодинамики поверхности высокодисперсных систем горных пород для строительных композитов (теория и практика). Архангельск: ИПЦ САФУ, 2012. 116 с.

6.2. Перечень дополнительной литературы

- 1. Лопанова Е.А. Инфракрасная спектроскопия: методические указания к выполнению научно-исследовательских и лабораторных работ для студентов спец. 270106. Белгород: Издательство БГТУ, 2008. 29 с.
- 2. Ролдунгин В.И. Физикохимия поверхности: учебник-монография. 2-е изд., испр. Долгопрудный: Издательский Дом "Интеллект", 2011. 568 с.

6.3. Перечень интернет ресурсов

- 1. Физические методы исследования в органической химии. Спектроскопия радиооптического диапазона и масс-спектрометрия [Электронный ресурс]: учебное пособие. Омск: Омский государственный университет им. Ф.М. Достоевского, 2009. 264 с. Режим доступа: http://www.iprbookshop.ru/24955.
- 2. Кларк Э.Р., Эберхард К.Н. Микроскопические методы исследования материалов [Электронный ресурс]: монография; пер. с англ. С. Л. Баженова. М.: Техносфера, 2007. 371 с.

Режим доступа: http://www.iprbookshop.ru/12728.

3. C3M NanoEducator LE. Лабораторный практикум. — Точка доступа: http://ntspb.ru/products/uchebno-nauchnyj-kompleks-platforma-nanoedyukator/nanoeducator-1-1/laboratornyie-rabotyi/

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Лекционные и практические занятия проводятся в специализированных учебных лабораториях № 103, 107 учебного корпуса (УК) кафедры материаловедения и технологии материалов в соответствии с требованиями, предъявляемыми к учебным лабораториям.

Лабораторные работы проводятся в учебных лабораториях № 105, 107, 027 учебного корпуса (УК) и в Центре высоких технологий БГТУ им. В.Г. Шухова.

Традиционно используется мультимедийная технология при проведении лекционных занятий. Для обеспечения учебного лекционного и практического процесса применяется интерактивные электронные средства обучения — электронная доска Hitachi.

Научно-исследовательская лаборатория синтеза высокомолекулярных соединений: лабораторная центрифуга Liston C 2203, маятниковый твердомер по методу Кёнига-Персоза, твердомер-индентор TP 5014.

Учебно-научная лаборатория синтеза и исследований материалов: ротационный вискозиметр Rheotest RN4.1, аналитические весы AB-60-01, весы ВЛТЭ-500, спектрофотометр LEKI SS-1207, прибор для определения краевого угла смачивания KRUSS EASY DROP DSA-30, тензиометр KRUSS K100.

Учебно-научная лаборатория дисперсионного анализа: компьютерный многофункциональный прибор ПСХ-12 (SP), прибор «Sorbi» для определения удельной поверхности дисперсных материалов методом БЭТ, металлографический микроскоп.

Лаборатория высоких технологий: микросайзер 201С, ИК-спектрометр VERTEX 70, Наноиндентор Nexus 4000, лазерный анализатор размеров частиц ANALYSETTE 22 NanoTec plus, рентгенофлуоресцентный спектрометр серии ARL 9900 WorkStation со встроенной системой дифракции.

7.1. Перечень программного обеспечения

Для проведения занятий используется пакет программного обеспечения Microsoft Office Professional 2013 или аналог.

ПРИЛОЖЕНИЯ

Приложение №1. Предметом изучения дисциплины «Приборы и методы материаловедении» исследований В являются существующие методы исследования материалов, особенности и возможности этих методов, области их применения. Планируется изучить аппаратную базу методов, устройство и принцип действия приборов. Результативность логического изложения материала в соответствии с планом лекции оценивается текущей аттестацией и итоговым контролем в виде зачета. Основные задачи преподавания по данной дисциплине обоснованы информационной ценностью, воспитательным достижением дидактических целей. Материал, представляемый студентам, должен нести научный и информативный характер, включая современный научный уровень предлагаемого материала.

В силу сложности дисциплины требует обязательного рассмотрения всех вопросов, как на лекции, так и на практических, лабораторных занятиях. Цель лабораторных и практических занятий заключается в формировании у студентов навыков по использованию и применению методов исследования веществ и композитов в сфере материаловедения при помощи современного аналитического инструментария. Усвоение учебного материала целесообразно контролировать в ходе устных опросов. Предполагается выполнение различных расчетных и графических заданий по теме занятия с дальнейшим анализом полученных результатов. В рамках аудиторного часа решается и разбирается задание-пример. На самостоятельную работу обучающийся получает расчетно-графического задание с индивидуальным вариантом.

Важное значение для изучения курса имеет самостоятельная работа студентов. Изучение отдельных тем курса необходимо осуществлять в соответствии с поставленными в них целями, их значимостью, основываясь на содержании и вопросах, поставленных в лекции преподавателя и приведенных в перечне контрольных вопросов.

Формы контроля знаний студентов предполагают текущий и итоговый контроль. Текущий контроль знаний проводится в форме систематических опросов в рамках практических занятий. Формой итогового контроля является зачет.

Рабочая программа без изменений утверждена на 2016/201	7 учебный год.
Протокол № 6 заседания кафедры от «18» мая 2016 г.	
Заведующий кафедрой д.т.н., проф.	_В.В. Строкова
Директор института д.т.н., проф.	_В.А. Уваров

Рабочая программа без изменений утверждена на 2017/2018 учебный го	οд.
Протокол № 5 заседания кафедры от «23» мая 2017 г.	
Заведующий кафедрой д.т.н., проф. В.В. Строко	ова
Директор института д.т.н., проф. В.А. Уварог	В

Утверждение рабочей программы без изменений

Рабочая программа без изменений утверждена на 2018/2019 учебный год.

Протокол № 6 заседания кафедры от «07» мая 20/18 г

Заведующий кафедрой д.т.н., проф.

В.В. Строкова

Директор института д.т.н., проф.

В.А. Уваров

Рабочая программа без изменений у	гверждена на 2019/2020) учебный год.
Протокол № 5 заседания кафедры от	: «30» мая 2019 г.	
Заведующий кафедрой д.т.н., проф.	BAT	В.В. Строкова
Директор института д.т.н., проф.	n	В.А. Уваров

Рабочая программа без изменений ут	верждена на 2020/202	1 учебный год.
Протокол № заседания кафедры	тот « <u>28</u> »	2020 г.
Заведующий кафедрой д.т.н., проф.	A A	_ В.В. Строкова
Директор института д.т.н., проф.	Chyly y	_ В.А. Уваров

ПРИЛОЖЕНИЯ

Приложение №1. Предметом изучения дисциплины «Приборы и методы материаловедении» являются существующие исследований методы исследования материалов, особенности и возможности этих методов, области их применения. Планируется изучить аппаратную базу методов, устройство и принцип действия приборов. Результативность логического изложения материала в соответствии с планом лекции оценивается текущей аттестацией и итоговым контролем в виде зачета. Основные задачи преподавания по данной дисциплине обоснованы информационной ценностью, воспитательным достижением дидактических целей. Материал, представляемый студентам, должен нести научный и информативный характер, включая современный научный уровень предлагаемого материала.

В силу сложности дисциплины требует обязательного рассмотрения всех вопросов, как на лекции, так и на практических, лабораторных занятиях. Цель лабораторных и практических занятий заключается в формировании у студентов навыков по использованию и применению методов исследования веществ и композитов в сфере материаловедения при помощи современного аналитического инструментария. Усвоение учебного материала целесообразно контролировать в ходе устных опросов. Предполагается выполнение различных расчетных и графических заданий по теме занятия с дальнейшим анализом полученных результатов. В рамках аудиторного часа решается и разбирается задание-пример. На самостоятельную работу обучающийся получает расчетно-графического задание с индивидуальным вариантом.

Важное значение для изучения курса имеет самостоятельная работа студентов. Изучение отдельных тем курса необходимо осуществлять в соответствии с поставленными в них целями, их значимостью, основываясь на содержании и вопросах, поставленных в лекции преподавателя и приведенных в перечне контрольных вопросов.

Формы контроля знаний студентов предполагают текущий и итоговый контроль. Текущий контроль знаний проводится в форме систематических опросов в рамках практических занятий. Формой итогового контроля является зачет.