МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

УТВЕРЖДАЮ
Директор института

« 17 » 2015 г.

<u>РАБОЧАЯ ПРОГРАММА</u>

дисциплины (модуля)

ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ

(наименование дисциплины, модуля)

направление подготовки (специальность):

15.03.04 – Автоматизация технологических процессов и производств

(шифр и наименование направления бакалавриата, магистра, специальности)

Направленность программы (профиль, специализация):

Автоматизация технологических процессов и производств (промышленность)

(наименование образовательной программы (профиль, специализация)

Квалификация

бакалавр

(бакалавр, магистр, специалист)

Форма обучения

очная

(очная, заочная и др.)

Институт: Информационных технологий и управляющих систем

Кафедра: Технической кибернетики

Белгород – 2015

т одориманти
высшего образования 15.03.04 – Автоматизация технологических
процессов и производств (бакалавриат), приказ Миноорнауки
России от 12 марта 2015 г. №200
плана учебного процесса БГТУ им. В.Г. Шухова, введенного в
лействие в 2015 году по направлению подготовки <u>15.03.04 —</u>
Автоматизация технологических процессов и производств
(бакалавриат).
Составитель (составители): доцент (Д.В. Величко)
(ученая степень и звание, подпись) (инициалы, фамилия)
Q
Рабочая программа согласована с выпускающей кафедрой
техническая кибернетика
(наименование кафедры)
Завелующий кафелрой: л.т.н., проф. (В.Г. Рубанов)
Заведующий кафедрой: д.т.н., проф. (В.Г. Рубанов) (ученая степень и звание, подпись) (инициалы, фамилия)
-
« <u>14</u> » <u>ОН</u> <u>2015</u> г.
Рабочая программа обсуждена на заседании кафедры
« 14 » 04 201 <u>5</u> г., протокол № <u>9</u>
Заведующий кафедрой: д.т.н., проф. (В.Г. Рубанов)
(ученая степень и звание, подпись) (инициалы, фамилия)
Рабочая программа одобрена методической комиссией института

_201<u>5</u> г., протокол № <u>6/4</u>

(ученая степень и звание, подпись)

Председатель: к.т.н., доц.

(Ю.И. Солопов)

(инициалы, фамилия)

• Федерального государственного образовательного стандарта

Рабочая программа составлена на основании требований:

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Формируемые компетенции		е компетенции	Требования к результатам обучения
$N_{\underline{0}}$	Код компетенции	Компетенция	
		альные	
1	ПК-20	Способность проводить эксперименты по заданным методикам с обработкой и анализом их результатов, составлять описания выполненных исследований и подготавливать данные для разработки научных обзоров и публикаций	В результате освоения дисциплины обучающийся должен Знать: принципы функционирования, основные характеристики и параметры, условные графические обозначения современных полупроводниковых приборов, применяемых в электронике. Уметь: грамотно производить определение основных параметров и характеристик полупроводниковых приборов, пользоваться справочной литературой. Владеть: навыками выбора средств и методов электрических измерений, оценки достоверности получаемых результатов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

$N_{\underline{0}}$	Наименование дисциплины (модуля)
1	Физика (электричество и магнетизм, теория твердого тела)
2	Математика (дифференциальное и интегральное исчисление)
3	Химия (теория валентных связей, зонная теория кристаллов)

Содержание дисциплины служит основой для изучения следующих дисциплин:

$\mathcal{N}_{\underline{o}}$	Наименование дисциплины (модуля)
1	Электронные устройства мехатронных и робототехнических систем
2	Технические средства систем управления роботов
3	Микроконтроллеры в робототехнических системах
	·

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 5 зач. единиц, 180 часов.

Вид учебной работы	Всего часов	Семестр № 3
Общая трудоемкость дисциплины, час	180	180
Контактная работа (аудиторные занятия), в том числе:	68	68
лекции	34	34
лабораторные	17	17
практические	17	17
Самостоятельная работа студентов, в том числе:	112	112
Курсовой проект	51	51
Другие виды самостоятельной работы	61	61
Форма промежуточная аттестация (зачет, экзамен)	экзамен (36)	экзамен (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 4.1 Наименование тем, их содержание и объем

Курс 2 Семестр 3

		Объем на тематический раздел по видам				
No	Наименование раздела	на	грузки учеб	ной нагрузки	, час	
п/п	(краткое содержание)		Практиче	Лаборатор	Самостоя	
11/11	(краткое содержание)	Лекции	ские	ные	тельная	
			занятия	занятия	работа	
1	2	3	4	5	6	
	<u> 1. Введен</u>	<u>ие</u>				
	(наименование тематиче	еского раздел	na)			
1	Предмет, проблемы и задачи курса. Исторический экскурс. Основные понятия и	2			4	
	определения					
	ОТОГО	2			4	
	2. Принципы зонной теории твёрдого тела					
	(наименование тематиче	еского раздел	na)			
1	Образование энергетических зон. Энергетические диаграммы твердых тел	2			4	
	ИТОГО	2			4	
	3. Электропроводность і	полупрово	дников			
	(наименование тематиче	еского раздел	та)			
	Свойства полупроводников, выделяющие их в					
	особый класс. Структура полупроводников					
1	(пространственное и плоскостное изображение	2			4	
	кристаллической решётки). Подвижные					
	носители заряда в полупроводниках					

		Объем на тематический раздел по вид			
No	Наименование раздела	нагрузки учебной нагрузки, час			
п/п	(краткое содержание)	Лекции	Практиче ские	Лаборатор ные	Самостоя тельная
			занятия	занятия	работа
	(электронная и дырочная				
	электропроводимость). Равновесная				
	концентрация носителей заряда в собственном				
	полупроводнике				
	Примеси в полупроводниках (донорные и				
	акцепторные). Примесные полупроводники				
2	(полупроводники <i>п</i> -типа, полупроводники	2			4
	<i>p</i> -типа). Компенсация примеси. Температурная зависимость концентрации носителей заряда в				
	примесном полупроводнике				
	Время жизни неравновесных носителей заряда.				
	Виды рекомбинации. Механизмы генерации и				
3	рекомбинации пар носителей заряда. Стадии	2			4
	рекомбинации через ловушки				
	ИТОГО	6			12
	4. Движение носит		1a	<u> </u>	12
	(наименование тематиче				
1	Диффузия. Дрейф. Диффузионная длина.	2			4
1	Подвижность носителей заряда				4
	ИТОГО	2			4
	5. Электронно-дырочный и металло-			<u> 1ереходы</u>	
	(наименование тематич	еского раздел	ıа) Г	-	
	Структура и принцип действия электронно-				
	дырочного перехода. Энергетическая диаграмма <i>p-n</i> —перехода. Потенциальный				
	барьер p - n —перехода. Потенциальный барьер p - n —перехода. Прямое смещение p - n —				
	перехода. Инжекция. Прямая ветвь вольт-				
	амперной характеристики (ВАХ) р-п-				
	перехода. Обратное смещение <i>p-n</i> -перехода.				
	Экстракция. Составляющие обратного тока				
	<i>p-n</i> -перехода (механизм образования				
	теплового тока насыщения, механизм				
	образования тока термогенерации). Обратная				
	ветвь вольт-амперной характеристики <i>p-n</i> -				
1	перехода. Дифференциальное сопротивление	6	4		18
1	<i>p-n</i> -перехода. Вольт-амперная характеристика	O	7		10
	реального <i>р-п</i> -перехода. Модели вольт-				
	амперной характеристики. Ёмкости р-п-				
	перехода (барьерная, диффузионная). Вольт-				
	фарадные характеристики барьерной и				
	диффузионной емкостей <i>р-п</i> -перехода.				
	Частотные характеристики барьерной и				
	диффузионной емкостей <i>p-n</i> -перехода. Эквивалентные схемы <i>p-n</i> -перехода. Пробои				
	р-п-перехода (лавинный, туннельный,				
	p- n -персхода (лавинный, Туннельный, тепловой). Переходные процессы в p - n -				
	переходах (при больших напряжениях и токах,				
	при малых напряжениях и токах)				
2	Металло-полупроводниковые переходы.	2	2		6
	<u> </u>				,

				еский раздел	
No	Наименование раздела	на	грузки учеог Практиче	ной нагрузки Лаборатор	, час Самостоя
п/п	(краткое содержание)	Лекции	ские	ные	тельная
		,	занятия	занятия	работа
	Переход с барьером Шоттки. Омический				
	контакт	0	(24
	ИТОГО 6. Полупроводнико	8 By 10 HD460	6		24
	(наименование тематич				
	Классификация диодов. Применение	•			
	выпрямительных диодов в схемах				
	однополупериодного выпрямителя и				
	амплитудного ограничителя напряжения.				
1	Варикапы. Применение варикапа для	4	4	6	16
	настройки колебательного контура.				
	Стабилитроны. Применение стабилитрона для				
	стабилизации постоянного напряжения.				
	Термокомпенсированные стабилитроны. Стабисторы. Импульсные диоды				
	Биполярные транзисторы (БпТ). Структура и				
	условное графическое обозначение				
	биполярных транзисторов. Режимы работы				
	биполярных транзисторов. Условия				
	взаимодействия <i>p-n</i> -переходов в биполярных				
	транзисторах. Принцип действия биполярных				
	транзисторов. Распределение токов в				
	биполярном транзисторе. Соотношение между				
	токами в биполярном транзисторе.				
	Зависимость коэффициента передачи тока от				
	тока эмиттера. Потенциальная диаграмма				
2	биполярных транзисторов. Распределение	4	3	6	18
2	концентрации неосновных носителей заряда в базе. Модуляция толщины базы (эффект Эрли,	4	3	6	16
	эффект Кирка). Основные схемы включения				
	биполярного транзистора. Определение				
	режима работы биполярного транзистора.				
	Статические вольт-амперные характеристики				
	биполярных транзисторов. Динамика работы				
	биполярного транзистора. Сравнительный				
	анализ усилительных каскадов на основе				
	биполярных транзисторов. Частотные свойства				
	биполярных транзисторов. Шумы в				
	биполярных транзисторах. Пробои				
	биполярных транзисторов Классификация тиристоров. Структура и				
	Классификация тиристоров. Структура и принцип действия диодных тиристоров				
	(динисторов). Вольт-амперная характеристика				
	диодного тиристора. Двухтранзисторная				
3	модель работы диодного тиристора. Условное	2	2	2	12
	графическое обозначение диодного тиристора.				
	Структура и принцип действия триодных				
	тиристоров (тринисторов). Вольт-амперные				
	характеристики триодного тиристора.				

			Объем на тематический раздел по вида нагрузки учебной нагрузки, час		
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практиче ские занятия	Лаборатор ные занятия	Самостоя тельная работа
	Условные графические обозначения триодных тиристоров. Структура и принцип действия симметричных тиристоров (симисторов). Вольт-амперные характеристики симметричных тиристоров. Условные графические обозначения симметричных тиристоров. Динамика работы тиристора. Эффект dU/dt . Применение тиристора в релаксационном генераторе пилообразных колебаний				
4	Классификация полевых транзисторов. Структура и принцип действия полевого транзистора с управляющим <i>p-n</i> —переходом. Статические вольт-амперные характеристики полевого транзистора с управляющим <i>p-n</i> —переходом. Условное графическое обозначение полевого транзистора с управляющим <i>p-n</i> —переходом. Структура и принцип действия МДП-транзистора со встроенным каналом. Статические вольтамперные характеристики МДП-транзистора со встроенным каналом. Условное графическое обозначение МДП-транзистора со встроенным каналом. Структура и принцип действия МДП-транзистора с индуцированным каналом. Статические вольт-амперные характеристики МДП-транзистора с индуцированным каналом. Условное графическое обозначение МДП-транзистора с индуцированным каналом. Условное графическое обозначение МДП-транзистора с индуцированным каналом	2	2	2	12
5	Принципы действия фотоэлектрических полупроводниковых приборов (фоторезистор, фотодиод, фототранзистор). Элементы практических схем с фотоэлектрическими приборами	2		1	6
	ИТОГО	14	11	17	64
	ВСЕГО	34	17	17	112

4.2. Содержание практических (семинарских) занятий

№	Тема практического занятия	Кол-во
п/п		часов
1	Выпрямители напряжения	2
2	Параметрический стабилизатор постоянного напряжения	2
3	Схема электронной настройки колебательного контура с варикапом	2
4	Амплитудные ограничители напряжения	2
5	Диодные ключи	2
6	Усилительные каскады на биполярных транзисторах	2
7	Усилительные каскады на полевых транзисторах	2

№ п/п	Тема практического занятия	Кол-во часов
8	Релаксационный генератор пилообразных колебаний на тиристоре	2
9	Схема с фазовым регулированием анодного тока на триодном тиристоре	1
	ИТОГО	17

4.3. Содержание лабораторных занятий

№ п/п	№ раздела дисциплины (в соответствии с п.4.1)	Тема лабораторного занятия	Кол-во часов	
1, 2	2,3,4,5,6	Полупроводниковые диоды в схемах выпрямления и стабилизации напряжения, а также высокочастотные и импульсные диоды	6	
3, 4	3, 4, 5, 6	Биполярный транзистор в режимах постоянного тока и усиления малых сигналов	6	
5	3, 4, 5, 6	Полевые транзисторы	2	
6	3, 4, 5, 6	Диодные и триодные тиристоры	2	
7	3, 4, 5, 6	Фотоэлектрические полупроводниковые приборы		
		ИТОГО		

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов (типовых заданий)

No	Содержание вопросов	
п/п	содержиние вопросов	
1	Что такое электронно-дырочный переход?	
2	Что такое контактная разность потенциалов?	
3	Назовите основные составляющие тока в р-п-переходе.	
4	Что такое обратный ток р-п - перехода и как он зависит от температуры?	
5	Какое влияние оказывает внешнее прямое и обратное напряжение на свойства	
	р-п-перехода?	
6	Чем отличается диффузия и дрейф носителей заряда?	
7	Объяснить основное свойство р-п-перехода и изобразить его вольт-амперную	
/	характеристику.	
8	Что такое пробой р-п-перехода? Какое практическое значение имеет	
0	электрический пробой?	
9	Перечислите основные параметры стабилитрона.	
10	Что такое стабисторы и двуанодные стабилитроны?	
11	С чем связано появление выброса напряжения на переходной характеристике при	
11	включении импульсного диода?	
12	Как изменяются ток и напряжение на диоде при его включении?	
13	Что такое время установления t_{ycm} и время восстановления t_{socm} ?	
1.4	Как зависит время установления и восстановления от амплитуды прямого и	
14	обратного тока?	
15	Каковы способы уменьшения времени жизни неосновных носителей заряда?	
16	Что такое барьерная и диффузионная емкость?	

№	Содержание вопросов
п/п	
17	Как зависит величина барьерной емкости от напряжения на диоде?
18	В чем состоит отличие между транзисторами р-n-р типа и n-p-n типа?
19	Что такое коэффициент инжекции?
20	Что такое коэффициент переноса?
21	Что такое эффект модуляции ширины базы (эффект Эрли)?
22	Как и почему влияет напряжение $U_{\kappa\delta}$ на положение входной статической характеристики в схеме включения транзистора с общей базой (ОБ)?
23	Какие процессы в структуре транзистора определяют ток в выводе базы?
24	Как связаны ток эмиттера, базы и коллектора?
25	Почему выходные вольт-амперные характеристики в схеме ОБ заходят за ось ординат?
26	Как с помощью коллекторных и эмиттерных характеристик определять h-параметры транзистора в схеме с ОБ?
27	Что такое насыщение и отсечка в биполярном транзисторе? Показать эти области на вольт-амперных характеристиках транзистора, включенного по схеме ОБ.
28	Каким образом напряжение $U_{\kappa 9}$ влияет на положение входной (базовой) характеристики схеме OЭ?
29	Почему наклон выходных (коллекторных) характеристик в схеме ОЭ больше, чем в схеме ОБ?
30	Почему выходные характеристики в схеме ОЭ выходят, приблизительно, из начала координат, а в схеме ОБ заходят в область отрицательных значений
21	коллекторного напряжения? Почему входные характеристики в схеме ОБ выходят из начала координат, а в
31	схеме ОЭ заходят за ось абсцисс? Как связаны коэффициенты передачи тока в схеме ОБ и ОЭ?
33	Как связаны коэффициенты передачи тока в схеме ОБ и ОЭ! Каков физический смысл каждого из h- параметров транзистора?
34	Какая из схем включения транзистора имеет наибольшее усиление по мощности?
35	По какой причине сопротивление запертого коллекторного перехода $r_{\kappa(\delta)}$ в схеме ОБ больше, чем в схеме ОЭ?
36	Написать основные условия инжекции, экстракции в малой рекомбинации для транзистора p-n-p и n-p-n структур.
37	Какой ток течет в выводе коллектора в режиме отсечки?
38	Чем определяется температурная нестабильность коллекторного тока?
39	Назовите и охарактеризуйте основные схемы питания биполярных транзисторов
	от одного источника. Какие приборы относятся к классу приборов с полевым (потенциальным)
40	управлением? В чем их преимущество перед биполярными транзисторами, управляемыми током?
41	Как устроен полевой транзистор с управляющим p-n переходом (унитрон) и какую роль в нем играет p-n переход?
42	Как осуществляется модуляция ширины канала?
43	Как объяснить ограничение роста тока I_c при росте напряжения U_{cu} ?
44	Изобразите стоковые и стоко-затворные характеристики унитрона. Поясните происхождение различных областей из них.
45	Поясните смысл напряжений насыщения и отсечки тока I_c . Как они связаны?
46	Как определяются основные дифференциальные параметры полевых транзисторов?
47	Что такое температурно-стабильная точка (ТСТ)? В чем её практическая ценность?

№	Содержание вопросов
п/п	
48	Изобразите эквивалентные схемы полевого транзистора для диапазонов высоких и
	низких частот.
49	Изобразите простейшую схему усилителя на полевом транзисторе с управляющим
	р-п переходом.
50	Из каких соображений выбирают элементы R_u и C_u в цепи истока унитрона? Какие функции выполняет эта RC-цепь?
	Что такое транзистор с изолированным затвором и в чем его основное отличие от
51	полевого транзистора с управляющим р-п переходом и биполярного транзистора?
	Что означают термины "обогащение канала", "обеднение канала",
52	"индуцированный канал"?
	Какими возможностями обладает МДП-транзистор со встроенным каналом?
53	Изобразите его вольт-амперные характеристики.
	Поясните принцип действия МДП-структуры с индуцированным каналом. Как в
54	полупроводнике р-типа создать электронный канал?
	Какой вид имеют вольт-амперные характеристики транзистора с индуцированным
55	каналом?
FC	Как по ГОСТу обозначаются полевые транзисторы? Как по их обозначению
56	узнать тип канала?
57	Что такое тиристор и чем обусловлена высокая эффективность его работы?
58	Поясните сущность взаимодействия трех р-п и п-р переходов в тиристорной
56	структуре.
59	Изобразите вольт-амперную характеристику диодного тиристора и поясните
	происхождение каждого из ее участков.
60	Что такое ток включения $I_{g_{KR}}$, ток выключения $I_{g_{blKR}}$ и ток управления спрямления
	I _{y cmp} ?
61	Какова величина остаточного напряжения на включенном тиристоре?
62	Какое смещение имеют переходы тиристора в выключенном состоянии?
63	Какое смещение имеют переходы тиристора во включенном состоянии?
64	Как объяснить переход p - n - p - n структуры в режиме насыщения при переключении
65	на большой ток? Назовите и поясните основные параметры динистора?
66	Почему триодный тиристор называется управляемым переключателем тока?
00	Поясните причины воздействия прямого базового тока управления I _v на процесс
67	включения тиристора?
	Как можно выключить включенный тиристор? Какой способ выключения
68	считается наилучшим?
69	Что такое пусковая характеристика тиристора?
70	Что такое симистор?
71	Каков порядок времени включения $t_{вкл}$ и выключения $t_{выкл}$ тиристора?
72	Для чего во внешнюю цепь тиристорной схемы обязательно включается резистор?
73	Какой порядок коэффициента усиления тока для триодного тиристора?
74	С чем связаны трудности при выключении тиристора по управляющему
/4	электроду?
75	Как устроен и работает полностью управляемый (двухоперационный) тиристор?
76	Как по ГОСТу обозначаются на схемах и маркируются тиристоры разных типов?
77	Что такое внутренний фотоэффект?
78	Что такое интегральная и удельная чувствительность фотоприбора?
79	Что такое вольт-амперная и световая характеристики фотоприбора и каким
	образом по ним можно определить интегральную чувствительность?
80	Как устроен и какими свойствами и характеристиками обладает фоторезистор?
81	Что такое фотодиод и в каких режимах он может работать?

№ п/п	Содержание вопросов	
82	Каким может быть применение фотовентильного режима работы фотодиода?	
83	Что такое фототранзистор и чем он отличается по принципу действия от обычного биполярного транзистора?	
84	Нарисуйте простейшую схему фотореле и поясните принцип его действия.	
85	Что такое световой поток и освещённость? В каких единицах они измеряются?	

5.2. Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем

Курсовой проект является самостоятельной работой студента и имеет своей целью закрепить и углубить знания, полученные при изучении данной дисциплины.

В задании на курсовой проект указывается тема проекта, техническое задание, включающее в себя содержание работы и исходные данные для проектирования, объём работы, рекомендуемую литературу и пособия, сроки выполнения проекта по графику.

Результаты курсового проектирования должны быть оформлены в виде расчётно-пояснительной записки и графической части. Примерный объем расчётно-пояснительной записки 30–40 страниц машинописного текста. Графическая часть проекта должна быть выполнена в соответствии со стандартами, изложенными в ЕСКД.

На выполнение курсового проекта предусмотрено 51 час самостоятельной работы студента.

Содержанием курсового проекта является выбор элементной базы для усилительно-преобразовательного устройства автоматизированной системы управления технологического процесса.

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

- 1. Величко, Д.В. Полупроводниковые приборы и устройства: Учеб. пособие. / Д.В. Величко, В.Г. Рубанов. Белгород: Политерра, 2006. 184 с.
- 2. Лачин, В.И. Электроника: Учеб. пособие. 4-е изд. / В.И. Лачин, Н.С. Савёлов. – Ростов н/Д: Феникс, 2004. – 576 с.
- 3. Першин, В.Т. Основы радиоэлектроники и схемотехники: Учеб. пособие по курсовому проектированию / В.Т. Першин.— Мн.: Изд-во БГУИР, 2004. –116 с.
- 4. Пасынков, В.В. Полупроводниковые приборы: Учебник для вузов. 5-е изд., исправл. / В.В. Пасынков, Л.К. Чиркин. СПб.: Лань, 2001. 480 с.

5. Батушев, В.А. Электронные приборы: Учебник для вузов / В.А. Батушев. — М.: Высшая школа, 1980. — 383 с.

6.2. Перечень дополнительной литературы

- 1. Прянишников, В.А. Электроника (курс лекций): Учебник для вузов / В.А. Прянишников. СПб.: Корона принт, 1998. 399 с.
- 2. Гусев, В.Г. Электроника: Учебник для вузов 2-е изд., перераб. и доп. / В.Г. Гусев, Ю.М. Гусев. М.: Высшая школа, 1991. 622 с.
- 3. Игумнов, Д.В. Полупроводниковые устройства непрерывного действия / Д.В. Игумнов, Г.П. Костюнина. М.: Радио и связь, 1990. 256 с.
- 4. Жеребцов, И.П. Основы электроники. 5-е изд., перераб. и доп. И.П. Жеребцов. Л.: Энергоатомиздат, 1990. 352 с.
- 5. Галкин, В.И. Промышленная электроника: Учеб. пособие/ В.И. Галкин. Мн.: Выш. шк., 1989. 336 с.
- 6. Электронные приборы: Учебник для вузов / В.Н. Дулин, Н.А. Аваев, В.П. Демин и др.; под ред. Г.Г. Шишкина. М.: Энергоатомиздат, 1989. 495 с.
- 7. Шуренков, В.В. Физика контактных явлений: Учеб. пособие / В.В. Шуренков, В.В. Беклемишев, А.М. Коршунов. М.: Изд-во МИФИ, 1988. 80 с.
- 8. Левинштейн, М.Е. Барьеры (От кристалла до интегральной схемы) / М.Е. Левинштейн, Г.С. Симин. М.: Наука, 1987. 320 с.
- 9. Милькевич, Е.А. Методические указания к лабораторным работам по курсу "Промышленная электроника". Ч.1, 2 / Сост.: Е.А. Милькевич, А.В. Белоусов. Белгород: Изд-во БТИСМ, 1986.
- 10. Основы промышленной электроники: Учебник для вузов / В.Г. Герасимов, О.М. Князьков, А.Е. Краснопольский,В.В. Сухоруков; под ред. В.Г. Герасимова. М.: Высшая школа, 1986. 336 с.
- 11. Манаев, Е.И. Основы радиоэлектроники: Учеб. пособие. 2-е изд., перераб. и доп. / Е.И. Манаев. М.: Радио и связь, 1985. 504 с.
- 12. Забродин, Ю.С. Промышленная электроника: Учебник для вузов / Ю.С. Забродин. М.: Высшая школа, 1982. 496 с.
- 13. Шалимова, К.В. Физика полупроводников: Учебник для вузов. 2-е изд., перераб. и доп. / К.В. Шалимова. М.: Энергия, 1976. 416 с.

Справочная и нормативная литература

1. Галкин, В.И. Полупроводниковые приборы: Справочник / В.И. Галкин, А.Л. Булычёв, П.М. Лямин. – Мн.: Беларусь, 1994. – 347 с.

- 2. Полупроводниковые приборы. Транзисторы малой мощности: Справочник 2-е изд., стереотип. / А.А. Зайцев, А.И.Миркин, В.В. Мокряков и др.; Под ред. А.В. Голомедова. М.: Радио и связь, 1994. 384 с.
- 3. Полупроводниковые приборы. Транзисторы средней и большой мощности: Справочник 2-е изд., стереотип. / А.А. Зайцев, А.И.Миркин, В.В. Мокряков и др.; Под ред. А.В. Голомедова. М.: Радио и связь, 1994. 640 с.
- 4. ГОСТ 22622 77. Материалы полупроводниковые. Термины и определения основных электрофизических параметров.
- 5. ГОСТ 15133 77 (СТ СЭВ 2767 80). Приборы полупроводниковые. Термины и определения.
- 6. ГОСТ 2730 73 (СТ СЭВ 661 77). Единая система конструкторской документации. Обозначения условные графические в схемах. Приборы полупроводниковые.
- 7. ГОСТ 18472 82 (СТ СЭВ 1818 79). Приборы полупроводниковые. Основные размеры.
- 8. ГОСТ 19613 80. Столбы и блоки выпрямительные полупроводниковые. Основные размеры.
- 9. ГОСТ 25529 82 (СТ СЭВ 1125 78, СТ СЭВ 2768 80). Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров.
- 10. ГОСТ 20003 74 (СТ СЭВ 2770 80). Транзисторы биполярные. Термины, определения и буквенные обозначения параметров.
- 11. ГОСТ 20332 84 (СТ СЭВ 1125 78). Тиристоры. Термины, определения и буквенные обозначения параметров.
- 12. ГОСТ 19095 73 (СТ СЭВ 2771 80). Транзисторы полевые. Электрические параметры. Термины, определения и буквенные обозначения.
- 13. ГОСТ 21934 83. Приёмники излучения полупроводниковые фотоэлектрические и устройства фотоприёмные. Термины и определения.
- 14. ГОСТ 22274 80 (СТ СЭВ 3787 82). Излучатели полупроводниковые. Термины, определения и буквенные обозначения параметров.
- 15. ГОСТ 18577 80. Устройства термоэлектрические полупроводниковые. Термины и определения.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

• Электронное учебное пособие:

Величко, Д.В. Физические основы электроники [Электронный ресурс]: электрон. учеб. пособие с грифом УМО / Д.В. Величко, В.Г. Рубанов. – Белгород, 2006. – Деп. в ФГУП НТЦ «Информрегистр» 02.08.06, №0320601177. – Режим доступа: http://foe.bstu.ru

• Диафильм:

Электронно-дырочный переход. Студия «Диафильм», 1978 г. 50 кадров. Автор к.п.н., доц. И.Г. Морозова; консультант д.т.н., проф. И.Ф. Николаевский. – (Оцифрован в 2006 г.; размер 54.5 Мb, формат *.jpg).

• Видеофильмы:

- 1. Полупроводники. Киностудия «Центрнаучфильм». Чёрно-белый фильм, 1978 г. 20 мин. Авторы сценария к.ф.-м.н. А.Я. Шульман, к.ф.-м.н. В.К. Кобрин; консультанты д.ф.-м.н. А.М. Коган, д.ф.-м.н. Б.М. Орлов. (Оцифрован в 2005г.; размер 7.0 Мb, формат *.rm).
- 2. Фотоэффект. Киностудия «Леннаучфильм». Цветной фильм, 1977 г. 20 мин. Автор сценария Б. Малишевский; консультанты Б. Орлов, А. Смирнов. (Оцифрован в 2005 г.; размер 7.1 Мb, формат *.rm).
- 3. Физические основы полупроводниковых приборов. Свердловская киностудия, 1971 г. 40 мин. Автор сценария В. Дулин. Консультанты В. Дёмин, И. Трахтенберг. (Оцифрован в 2006 г.; размер 570 Мb, формат *.avi).

Лабораторные работы проводятся в специализированной лаборатории технической электроники МК210. Для проведения фронтальных работ на каждом лабораторном столе имеется следующее оборудование:

- 1. Генератор сигналов низкочастотный ГЗ-112/1,
- 2. Цифровой осциллограф GDS-71042,
- 3. Аналоговый двухлучевой осциллограф GOS-620FG,
- 4. Вольтметр универсальный цифровой В7-22А,
- 5. Вольтметр универсальный В7-26,
- 6. Мультиметр цифровой серии UT-30,
- 7. Мультиметр цифровой серии UT-70C,
- 8. Универсальная лабораторная панель настольного типа УЛП-1 со сменными цоколями,
- 9. Универсальный лабораторный стенд настольного типа ЛОЭ1А со сменными блоками.
- 10.Измеритель L,C,R универсальный Е7-11.

При чтении лекций, в аудитории M323, применяются интерактивные средства обучения:

- 1. Интерактивная доска Hitachi Starboard,
- 2. Проектор Hitachi CP-A100,
- 3. Пакет прикладного программного обеспечения Starboard Software, Hoytбyk Asus X58CSeries.

	рограммы без изменений	
Рабочая программа без изг	менений утверждена на 2016/201	17 учебный год.
Протокол № засе	дания кафедры от « <u>16</u> » <u>05</u>	20/6г.
Заведующий кафедрой	подпись, ФИО	Рубанов В.Г
Директор института	ОСР.	Белоусов А.В.

Утверждение рабочей программы без изменений	
Рабочая программа без изменений утверждена на 2017/2018	учебный год.
Протокол № <u>11</u> заседания кафедры от « <u>15</u> » <u>05</u>	20 <i>4</i> r.
Заведующий кафедрой подпись, ФИО	Рубанов В.Г
Директор института	Белоусов А.В.

Утверждение рабочей программы без изменений	
Рабочая программа без изменений утверждена на 2018/2019	учебный год.
Протокол № <u>43</u> заседания кафедры от « <u>01</u> » <u>06</u>	2012r.
Заведующий кафедрой	Рубанов В.Г.
Директор института	Белоусов А.В.

Утверждение рабочей программы без изменений	
Рабочая программа без изменений утверждена на 2019/2020 учебный год.	
Протокол № <u>12</u> заседания кафедры от « 17 » об 2019 г.	
Заведующий кафедрой	
подпись, ФИО	
Директор института	

Утверждение рабочей программы без изменений
Рабочая программа без изменений утверждена на 2020/2021 учебный год.
Протокол № <u>{0</u> заседания кафедры от «28 » 05 202ог.
Заведующий кафедрой
подпись, ФИО
Директор института