минобрнауки россии

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г. Шухова)

УТВЕРЖДАЮ

Директор института энергетики, информационных технологий и управляющих систем

канд. техн. наук, доцент

А.В. Белоусов

2016 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

ДАТЧИКИ И РЕГУЛЯТОРЫ В СИСТЕМАХ ЭЛЕКТРОТЕПЛОСНАБЖЕНИЯ

направление подготовки

13.03.02 Электроэнергетика и электротехника

профиль подготовки

Электропривод и автоматика

Квалификация

бакалавр

Форма обучения

очная

Институт энергетики, информационных технологий и управляющих систем Кафедра электроэнергетики и автоматики Рабочая программа составлена на основании требований:

- Федерального государственного образовательного стандарта высшего образования по направлению подготовки 13.03.02 «Электроэнергетика и электротехника» (уровень бакалавриата), утвержденного приказом Министерства образования и науки Российской Федерации № 955 от 3 сентября 2015 г;
- плана учебного процесса БГТУ им. В.Г. Шухова, введенного в действие в 2016 году.

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

	Формируемые компетенции		Требования к результатам обучения
No	Код ком-	Компетенция	- F
	петенции	,	
	·	Общ	епрофессиональные
1	ОПК-2	Способность применять	В результате освоения дисциплины обучающийся должен
		соответствующий физи-	Знать:
		ко-математический аппа-	теоретические основы разработки и функционирова-
		рат, методы анализа и мо-	ния систем автоматизации объектов управления для ре-
		делирования, теоретиче-	шения прикладных задач в системах электротеплоснаб-
		ского и эксперименталь-	жения, типовые системы автоматического регулирования
		ного исследования при	технологических процессов, иметь представление о про-
		решении профессиональ-	текающих в данных системах физических процессах;
		ных задач	основные понятия о принципах работы, назначении и
			конструктивных особенностях узлов и устройств элек-
			тронной техники, а также электрических, пневматических
			и гидравлических элементах в системах электротепло-
			снабжения;
			основные методы математического описания объектов
			электротеплоснабжения и систем управления, уравнения
			динамики и статики датчиков технологических парамет-
			ров. Уметь:
			формулировать и решать задачи синтеза автоматиче-
			ских систем управления объектами электротеплоснабже-
			ния;
			вести анализ и разработку блок-схем, структурных и
			функциональных схем автоматических систем контроля и
			управления электротеплоснабжения;
			рассчитывать основные структуры автоматизации
			объектов электротеплоснабжения на основах теории ав-
			томатического управления;
			математически описывать различные элементы и объ-
			екты автоматизации, моделировать процессы управления
			в системах автоматизации электротеплоснабжения;
			Владеть: навыками выбора и расчёта технических средств ав-
			томатики, используемой в системах управления;
			навыками интерпретации результатов моделирования
			различных систем и объектов электотеплоснабжения,
			проведения теоретических и экспериментальных исследо-
			ваний;
			навыками работы со справочными, каталожными дан-
			ными и информацией сети Интернет при расчетах и моде-
			лировании систем электротеплоснабжения.
	ПСО		рофессиональные
	ПК-8	Способностью использо-	В результате освоения дисциплины обучающийся должен
		вать технические средства для измерения и кон-	Знать:
		троля основных парамет-	теоретические основы измерения, регулирования, контроля и автоматического управления параметрами
		ров технологического	технологических процессов, основные понятия автомати-
		процесса	зированной обработки информации;
		процосси	классификацию, виды, назначение и основные харак-
			теристики контрольно-измерительных приборов, их ста-
			тические и динамические характеристики;
			III Iookiio ii Aimasiii lookiio kapaktopiiotiikii,

основные понятия о принципах работы различных датчиков технологических параметров;

структуру и принципы функционирования автоматических систем распределённых объектов управления, современных многоуровневых систем контроля и управления распределенными объектами электротеплоснабжения, таких как системы автоматизированного мониторинга (САМ) и автоматизированные системы диспетчерского управления (АСДУ).

Уметь:

применять возможности датчиков для решения различного типа задач в системах электротеплоснабжения (измерение временных параметров сигналов, формирование сигналов с заданными временными характеристиками, сбор, хранение и передача данных, управление исполнительными устройствами);

осуществлять расчёт и выбор контрольноизмерительных приборов и средств автоматизации, исходя из конкретно поставленной задачи, аргументировать свой выбор;

уметь пользоваться стандартами и нормативнотехнической документацией.

Владеть:

навыками по обращению с различными датчиками технологических параметров, измерительными приборами «интеллектуального» типа и комплексами измерительных систем;

навыками проектирования типовых структур многоуровневых АСДУ и систем автоматизированного мониторинга распределенных объектов управления (ОУ) систем электротеплоснабжения;

навыками применения различных методик расчёта настроечных параметров регуляторов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

No	Наименование дисциплины (модуля)
1	Высшая математика
2	Физика
3	Теоретические основы электротехники
4	Электрические аппараты
5	Электрические машины
6	Особенности профессиональной деятельности
7	Электрические измерения
8	Электротехническое материаловедение
9	Электроника
10	Автоматизированные системы контроля и учета энергии
11	Теория автоматического управления
12	Элементы систем автоматики
13	Функциональные узлы цифровой автоматики

Содержание дисциплины служит основой для изучения следующих дисциплин:

No	Наименование дисциплины (модуля)
1	Электропривод в современных технологиях
2	Автоматизация процессов и оборудования
3	Автоматизированные системы управления технологическими процессами
4	Программирование промышленных контроллеров
5	Монтаж, наладка и эксплуатация электроприводов
6	Монтаж, наладка и эксплуатация электрооборудования
7	Преддипломная практика
8	Государственная итоговая аттестация

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 6 зач. единиц, 216 часов.

Вид учебной работы	Всего	Семестр № 7
	часов	145 /
Общая трудоемкость дисциплины, час	216	216
Контактная работа (аудиторные занятия), в т.ч.:	85	85
лекции	34	34
лабораторные	17	17
практические	34	34
Самостоятельная работа студентов, в том числе:	131	131
Курсовой проект	-	-

Курсовая работа	-	-
Расчетно-графическое задание	18	18
Индивидуальное домашнее задание	-	-
Другие виды самостоятельной работы	77	77
Форма промежуточная аттестация	36	Экзамен
(зачет, экзамен)		(36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 4.1. Наименование тем, их содержание и объем Курс 3 Семестр 6

			ьем на то ел по ви		
			нагрузки, час		
<u>№</u> π/π	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятель- ная работа
1. 00	сновные понятия и определения технической кибернетики. Матем	иатич	неское	описа	ние,
перед	даточные функции, понятия временных и частотных характерист	гик да	атчик)B	
1.1	Введение в информатику – кибернетику – автоматику (датчики – регуляторы – автоматические системы – автоматизация). Краткая историческая справка о развитии автоматики. Современные автоматизированные системы диспетчерского управления (АСДУ) распределенными энергосистемами. Многоуровневые АСДУ. Особенности основных уровней автоматизации управления производственным процессом.	2	-	-	2
1.2	Основные понятия об особенностях схем автоматических систем контроля и управления (блок-схема, функциональная и структурная схемы) на примере типовых систем автоматического регулирования (САР).	2	5	-	7
1.3	Первичные измерительные преобразователи и измерительные приборы, их основные характеристики. Уравнения динамики и статики датчиков технологических параметров (ТП). Примеры математических моделей датчиков ТП и особенности решения уравнений движения с учетом типовых математических моделей датчиков ТП.	2	6	ı	8
2. Oc	новные типы датчиков технологических параметров, принципы	их де	йствия	я и осо)-
бенн					
2.1	Датчики и приборы для измерения температуры. Их назначение и классификация. Типы контактных датчиков температуры, их особенности и принцип действия. Передаточные функции контактных датчиков температуры. Статические и динамические характеристики. Особенности интеллектуальных датчиков температуры.	3	-	2	4
2.2	Бесконтактные методы измерения температуры. Классификация бесконтактных датчиков температуры. Статические и динамические характеристики. Принцип действия пирометров частичного излучения, спектрального отношения, полного излучения. Структурная схема тепловизора.	3	-	2	4
2.3	Датчики и приборы для измерения давления. Их назначение и	3	-	2	4

1			1		
	классификация. Типы датчиков давления, их особенности и принцип действия. Передаточные функции датчиков давления. Статические и динамические характеристики. Особенности интеллектуальных датчиков.				
2.4	Датчики и приборы для измерения количества и расхода вещества. Их назначение и классификация. Типы датчиков расхода, их особенности и принцип действия. Передаточные функции датчиков расхода и их характеристики.	3	-	2	4
2.5	Датчики и приборы для измерения уровня. Их назначение и клас- сификация. Типы датчиков уровня, их особенности и принцип действия. Передаточные функции датчиков уровня. Статические и динамические характеристики. Особенности интеллектуальных датчиков.	2	1	ı	1
2.6	Микропроцессорные измерительные приборы. Их назначение и классификация, типы. Датчики в составе узлов учета теплопотребления (УУТ). Назначение и классификация приборов для УУТ, их структура. Особенности применяемых датчиков. Передаточные функции датчиков в составе УУТ, их характеристики. Особенности типового «интеллектуального» теплосчётчика.	3	-	2	4
2.7	Датчики в составе измерительных комплексов для учета газа (УГ). Назначение и классификация приборов для УГ, их структура. Особенности применяемых датчиков в составе УГ. Передаточные функции датчиков в составе УГ и их характеристики.	2	1	1	1
	гулирующие устройства автоматических систем. Локальные регу азличного функционального назначения	лято]	рыик	сонтро	лле-
իու ի	Особенности регуляторов прямого и непрямого действия. Совре-				
3.1	менные регуляторы прямого действия. Состав регулирующих устройств (регуляторов) систем автоматизации объектов управления (ОУ).	3	6	-	9
3.2	Классификация промышленных контроллеров. Особенности формирования законов регулирования типа П, ПИ и ПИД на базе контроллеров и их расчет. Показатели качества САР. Основные методики настройки параметров ПИД-регуляторов для контроллеров.	2	6	2	9
3.3	Типовые специализированные контроллеры. Их назначение, структура, основные блоки регулирования и особенности. Типовые контроллеры программно-логического типа. Их назначение, структура и особенности. Особенности построения локальных САР и разработки алгоритмов управления распределёнными ОУ на основе типовых специализированных контроллеров.	2	6	3	11
3.4	Типовые контроллеры программно-логического типа. Отличия контроллеров логического типа от специализированных. Их назначение, структура и особенности. Особенности построения локальных САР на основе контроллеров программно-логического типа.	2	5	2	9
BCEI	70	34	34	17	77

4.2. Перечень практических (семинарских) занятий

№ п/п	Наименование раздела дисциплины	Тема практического (семинарского) за- нятия	К-во часов	К-во часов СРС
1.	Основные понятия и определения технической кибернетики. Математическое описание, передаточные функ-	Разработка блок-схем и функциональных схем автоматизации различных объектов управления и структурных схем локальных САР по заданному каналу регулирования.	5	5
2.	ции, понятия временных и частотных характеристик датчиков.	Основные временные и частотные характеристики датчиков.	6	6
3.		Определение переходных характеристик «датчик - ОУ» и особенности расчета параметров настройки электронных регуляторов.	6	6
4.	Регулирующие устройства автоматических систем. Ло- кальные регуляторы и кон- троллеры различного функ- ционального назначения.	Особенности формирования закона регулирования типа ПИ на базе контроллера с учетом или без учета внутренней ОС.	6	6
5.		Построение функциональных схем ло- кальных САР на основе типовых спе- циализированных контроллеров (управление температурным режимом промышленной установки).	6	6
6.		Построение функциональных схем ло- кальных САР на основе контроллеров программно-логического типа (управ- ление моноблоком электроприводов с применением реле-давления).	5	5
		ИТОГО:	34	34

4.3. Перечень лабораторных занятий

No	Наименование	Тема лабораторного занятия	К-во	К-во
Π/Π	раздела дисциплины		часов	часов
				CPC
1.		Экспериментальное исследование особен-	2	2
		ностей статических и динамических харак-		
	Основные типы дат-	теристик контактных датчиков температу-		
	чиков технологиче-	ры. Определение уравнений динамики, их		
	ских параметров,	параметров и передаточных функций.		
2.	принципы их дей-	Экспериментальное исследование особен-	2	2
	ствия, особенности,	ностей характеристик инфракрасных датчи-		
	статические и дина-	ков температуры и пирометров. Определе-		
	мические характери-	ние уравнений динамики, их параметров и		
	стики	передаточных функций.		
3.		Исследование особенностей датчиков дав-	2	2
		ления аналогового и цифрового типов.		

4.		Исследование особенностей датчиков расхода электромагнитного типа и измерительных приборов «интеллектуального» типа.	2	2
5.		Исследование комплекса измерительных систем интеллектуального типа для учета тепловой энергии. Изучение работы теплосчётчиков.	2	2
6.	Регулирующие устройства автоматических систем. Ло-	Исследование специализированных контроллеров типа ECL Comfort 300 в рамках управления распределенными системам теплоснабжения.	2	2
7.	кальные регуляторы и контроллеры различного функционально-	Настройка параметров ПИД-регулятора специализированного контроллера TPM32.	3	3
8.	го назначения	Исследование контроллеров программно- логического типа САУ-МП.	2	2
_		ИТОГО:	17	17

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов (типовых заданий)

1. Oc	раздела дисциплины	
	Основние понятия и	
ск М са фу вр	пределения техниче- кой кибернетики. Латематическое опи- ание, передаточные рункции, понятия ременных и частот- ых характеристик атчиков	 Введение в информатику – кибернетику – автоматику. Краткая историческая справка. Первые промышленные регуляторы и их особенности. Основные принципы автоматического регулирования. Основные понятия автоматических систем контроля и управления. Функциональная и структурная схемы автоматизации. Основные понятия автоматических систем контроля и управления. Блок-схема автоматизации ОУ. Понятие первичного измерительного преобразователя. Основные его характеристики. Понятие измерительного прибора. Основные его характеристики. Классификация датчиков первичных измерительных преобразователей. Уравнения динамики и статики датчиков. Привести примеры с учетом датчиков температуры или давления. Методы решения дифференциальных уравнений. Преобразования Лапласа и их основные свойства на примере термопреобразователей сопротивления. Временные характеристики датчиков. Привести примеры с учетом датчиков температуры или давления. Определение переходной характеристики термопары.

- 13. Частотные характеристики датчиков. Привести примеры с учетом датчиков температуры или давления.
 14. Математические модели датчиков на примере термопары и датчика давления.
 15. Современные автоматизированные системы диспетчерского управления (АСДУ) распределенными энергосистемами зданий.
 16. Многоуровневые АСДУ. Особенности основных уровней и особенности протоколов связи между оборудованием различных уровней.
 - 2. Основные типы датчиков технологических параметров, принципы их действия и особенности
- 17. Датчики и приборы для измерения температуры. Их назначение и классификация.
- 18. Металлические и полупроводниковые датчики температуры. Типы датчиков температуры, их особенности и принцип действия. Передаточные функции этих типов датчиков температуры.
- 19. Термоэлектрические датчики. Типы датчиков температуры, их особенности и принцип действия. Передаточные функции этих типов датчиков температуры.
- 20. Особенности контактных и бесконтактных средств измерения температуры.
- 21. Динамические характеристики датчиков температуры контактны и бесконтактных.
- 22. Бесконтактные методы измерения температуры. Принцип действия пирометров частичного излучения, спектрального отношения, полного излучения.
- 23. Датчики и приборы для измерения давления. Их назначение и классификация. Основные типы датчиков давления и их принцип действия. Передаточные функции датчиков давления.
- 24. Особенности датчиков давления тензорезисторного типа. Структура аналоговых и цифровых датчиков давления тензорезисторного типа.
- 25. Статические и динамические характеристики датчиков давления. Особенности при измерении давления с учетом импульсных трубок.
- 26. Датчики и приборы для измерения количества и расхода. Их назначение и классификация. Типы датчиков расхода, их особенности и принцип действия (турбинные и крыльчатые, ультразвуковые и вихревые). Передаточные функции датчиков расхода.
- 27. Датчики и расходомеры переменного перепада давления.
- 28. Датчики и расходомеры электромагнитного типа.
- 29. Датчики и приборы для измерения уровня жидкостей и сыпучих материалов. Датчики уровня на базе гидростатических

- датчиков давления, их особенности и принцип действия. 30. Емкостные и акустические датчики уровня, их особенности и принцип действия. 31. Интеллектуальные приборы для измерения тепловой энергии и их классификация. Особенности применяемых датчиков в составе этих приборов. 32. Электромагнитные теплосчётчики и их особенности. 33. Интеллектуальные приборы для измерения количества газа и их особенности. Особенности применяемых датчиков в составе этих приборов. 3 Регулирующие 34. Особенности регуляторов прямого и непрямого действия. устройства автомати-Состав регуляторов. ческих систем. Ло-35. Применение РПД в системах теплоснабжения. кальные регуляторы и 36. Классификация контроллеров. контроллеры различ-37. Основные особенности специализированных контроллеров. ного функционально-38. Основные особенности контроллеров для выполнения логиго назначения ческих зависимостей. 39. Основные особенности универсальных контроллеров. 40. Основные законы управления и идеальные регуляторы. 41. Особенности идеальных П-регуляторов, их структура, передаточные функции и временные характеристики. 42. Особенности идеальных ПИ-регуляторов, их структура, передаточные функции и временные характеристики. 43. Особенности идеальных ПИД-регуляторов, их структура, передаточные функции и временные характеристики. 44. Сравнительный анализ П-, ПИ- и ПИД-регуляторов. 45. Особенности регулирующих устройств при реализации пропорционального закона регулирования. 46. Типовой контроллер из класса специализированных. Особен-

 - ности и характеристики контроллера типа ТРМ32.
 - 47. Возможности применения контроллера типа ТРМ32 в системах теплоснабжения. Функциональная схема локальной САР.
 - 48. Типовой контроллер из класса специализированных. Особенности и характеристики контроллера типа ТРМ32.
 - 49. Типовой контроллер из класса программно-логических. Особенности и характеристики контроллера типа САУ-МП.
 - 50. Особенности схемы управления и контроля блоком циркуляшионных насосов.
 - 51. Возможности применения контроллеров типа ТРМ32 и типа САУ-МП в системах теплоснабжения. Функциональная схема локальной САР.
 - 52. Типовой контроллер из класса специализированных. Особенности и характеристики контроллера типа ECL Comfort 300.
 - 53. Автоматизация распределенных объектов управления. Особенности автоматизации системы теплоснабжения здания на

базе контроллера типа ECL Comfort 300.
54. Особенности ПИД-закона регулирования в цифровой форме.
55. Особенности реализации ПИ-закона регулирования в цифро-
вой форме без учета датчика положения ИМ.
56. Определение переходной характеристики «ОУ- датчик тех-
нологического параметра».
57. Особенности определения настроечных параметров регулятора (ОНПР).
58. Особенности методики ОНПР на основе применения пере-
ходной характеристики «ОУ- датчик технологического пара-
метра».

5.2. Перечень тем курсовых проектов, курсовых работ

Курсовые проекты (работы) учебным планом не предусмотрены.

5.3. Расчётно-графическое задание

Учебным планом предусмотрено выполнение расчетно-графического задания объемом самостоятельной работы студента (СРС) 18 часов.

Расчетно-графическое задание выполняются с целью проверки умений студента применять полученные знания для проектирования автоматических систем регулирования объектами теплоэнергетики на базе микроконтроллеров различного типа, расчета и анализа математической модели объекта управления, подбора оборудования и настройки регуляторов.

TEMA: «Автоматизация объектов управления в виде систем электротеплоснабжения».

Расчётно-графическое задание по дисциплине «Датчики и регуляторы в системах электротеплоснабжения» состоит из следующих пунктов:

- а) построение и описание блок-схемы автоматизации объекта управления;
- б) построение и описание функциональной схемы автоматизации ОУ;
- в) выбор датчиков и микропроцессорных измерительных приборов для контроля основных параметров ОУ, контроллеров;
- г) расчет и построение переходной характеристики «датчик объект управления»;
- д) расчет параметров настройки регуляторов;

Исходные данные для РГЗ следующие:

1. Уравнение движения ОУ:

$$T_{oy} \frac{d X(t)}{d t} + X(t) = k_{oy} \cdot Y(t - \tau),$$

где X(t) — регулируемая величина ОУ; Y(t) — регулирующая величина ОУ; T_{OV} — постоянная времени ОУ; τ — время запаздывания; k_{OV} — коэффициент передачи ОУ

по заданному каналу регулирования.

2. Уравнение движения датчика технологического параметра:

$$T_d \frac{d D(t)}{d t} + F(t) = k_d X(t) ,$$

где D(t) – выходная величина датчика технологического параметра; T_d – постоянная времени датчика; k_d – чувствительность датчика (T_d и k_d определяются с учетом выбранного датчика).

Варианты тем РГЗ.

Тема РГЗ	
Объект управления (ОУ)	X(t) — регулируемая величина ОУ; $Y(t)$ — регулирующая величина ОУ.
Уравнение движения ОУ	$T_{OY} \frac{d X(t)}{d t} + X(t) = k_{OY} \cdot Y(t- au),$ где T_{OV} — постоянная времени ОУ; $ au$ — время запаздывания; k_{OV} — коэффициент передачи ОУ по заданному каналу регулирования (задан в относительных величинах, %/%).

Исходные параметры соответственно для ОУ:

1.
$$T_{oy} = 30.0 \text{ c}$$
 $\kappa_{oy} = 1.2 \text{ %/%}, \quad \tau = 10 \text{ c}$
2. $T_{oy} = 32.0 \text{ c}$ $\kappa_{oy} = 1.21 \text{ %/%}, \quad \tau = 11 \text{ c}$
3. $T_{oy} = 34.0 \text{ c}$ $\kappa_{oy} = 1.22 \text{ %/%}, \quad \tau = 12 \text{ c}$
4. $T_{oy} = 36.0 \text{ c}$ $\kappa_{oy} = 1.23 \text{ %/%}, \quad \tau = 13 \text{ c}$
5. $T_{oy} = 37.0 \text{ c}$ $\kappa_{oy} = 1.24 \text{ %/%}, \quad \tau = 14 \text{ c}$
6. $T_{oy} = 38.0 \text{ c}$ $\kappa_{oy} = 1.25 \text{ %/%}, \quad \tau = 15 \text{ c}$
7. $T_{oy} = 39.0 \text{ c}$ $\kappa_{oy} = 1.26 \text{ %/%}, \quad \tau = 16 \text{ c}$
8. $T_{oy} = 40.0 \text{ c}$ $\kappa_{oy} = 1.27 \text{ %/%}, \quad \tau = 17 \text{ c}$
9. $T_{oy} = 40.5 \text{ c}$ $\kappa_{oy} = 1.28 \text{ %/%}, \quad \tau = 18 \text{ c}$
10. $T_{oy} = 41.0 \text{ c}$ $\kappa_{oy} = 1.29 \text{ %/%}, \quad \tau = 18.5 \text{ c}$
11. $T_{oy} = 41.5 \text{ c}$ $\kappa_{oy} = 1.33 \text{ %/%}, \quad \tau = 19 \text{ c}$
12. $T_{oy} = 42.0 \text{ c}$ $\kappa_{oy} = 1.31 \text{ %/%}, \quad \tau = 19.5 \text{ c}$
13. $T_{oy} = 42.5 \text{ c}$ $\kappa_{oy} = 1.33 \text{ %/%}, \quad \tau = 19.5 \text{ c}$
14. $T_{oy} = 43.0 \text{ c}$ $\kappa_{oy} = 1.33 \text{ %/%}, \quad \tau = 19.5 \text{ c}$
15. $T_{oy} = 43.5 \text{ c}$ $\kappa_{oy} = 1.33 \text{ %/%}, \quad \tau = 19.7 \text{ c}$
15. $T_{oy} = 44.0 \text{ c}$ $\kappa_{oy} = 1.34 \text{ %/%}, \quad \tau = 19.9 \text{ c}$
16. $T_{oy} = 44.0 \text{ c}$ $\kappa_{oy} = 1.35 \text{ %/%}, \quad \tau = 20 \text{ c}$
17. $T_{oy} = 44.5 \text{ c}$ $\kappa_{oy} = 1.36 \text{ %/%}, \quad \tau = 20 \text{ c}$
18. $T_{oy} = 45.5 \text{ c}$ $\kappa_{oy} = 1.38 \text{ %/%}, \quad \tau = 20.1 \text{ c}$
19. $T_{oy} = 45.5 \text{ c}$ $\kappa_{oy} = 1.38 \text{ %/%}, \quad \tau = 20.2 \text{ c}$
20. $T_{oy} = 46.0 \text{ c}$ $\kappa_{oy} = 1.39 \text{ %/%}, \quad \tau = 20.3 \text{ c}$

```
21. T_{oy} = 46.5 \text{ c} \kappa_{oy} = 1.40 \% / \%, \tau = 20.4 \text{ c}
22. T_{oy} = 47.0 \text{ c} \kappa_{oy} = 1.41 \% / \%, \tau = 20.5 \text{ c}
23. T_{oy} = 47.5 \text{ cc} \kappa_{oy} = 1.42 \% / \%, \tau = 20.6 \text{ c}
```

5.4. Перечень контрольных работ

Контрольные работы не предусмотрены.

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

- 1. Древс, Ю.Г. Технические и программные средства систем реального времени [Электронный ресурс] : учебник / Ю.Г. Древс. Электрон. дан. Москва : Издательство "Лаборатория знаний", 2015. 337 с. Режим доступа: https://e.lanbook.com/book/70691. Загл. с экрана.
- 2. Шарапов, В.М. Датчики [Электронный ресурс] : справочное пособие / В.М. Шарапов, Е.С. Полищук, Н.Д. Кошевой, Г.Г. Ишанин. Электрон. дан. Москва : Техносфера, 2012. 624 с. Режим доступа: https://e.lanbook.com/book/73560. Загл. с экрана.
- 3. Ощепков, А.Ю. Системы автоматического управления: теория, применение, моделирование в MATLAB [Электронный ресурс] : учебное пособие / А.Ю. Ощепков. Электрон. дан. Санкт-Петербург : Лань, 2013. 208 с. Режим доступа: https://e.lanbook.com/book/5848. Загл. с экрана.
- 4. Потапенко, А.Н. Основы автоматизации процессов централизованного теплоснабжения зданий: учебное пособие/ А.Н. Потапенко. Белгород: Изд-во БГТУ, 2006.-206 с. .— Режим доступа: https://elib.bstu.ru/Reader/Book/2014040920510613432800006174 . Загл. с экрана.

6.2. Перечень дополнительной литературы

- 1. Авдеева, Д.К. Преобразование измерительных сигналов [Электронный ресурс] : учебное пособие / Д.К. Авдеева. Электрон. дан. Томск : ТПУ, 2011. 128 с. Режим доступа: https://e.lanbook.com/book/10292. Загл. с экрана.
- 2. Новожилов, Б.М. Исследование динамических свойств датчика температуры [Электронный ресурс] : учебное пособие / Б.М. Новожилов. Электрон. дан. Москва : МГТУ им. Н.Э. Баумана, 2011. 23 с. Режим доступа: https://e.lanbook.com/book/52230. Загл. с экрана.
- 3. Шидловский С. В. Автоматизация технологических процессов и производств [Электронный учебник]: учебное пособие / Шидловский С. В., 2005, Томский государственный университет систем управления и радиоэлектроники. 100 с. Режим доступа: http://iprbookshop.ru/13918— Загл. с экрана.

6.3. Перечень интернет ресурсов

- 1. Журнал "Современные технологии автоматизации" с 2012 г. [Электронный ресурс]. электрон. текст. дан. Режим доступа: http://www.cta.ru.
- 2. Для научных и прикладных исследований с применением интеллектуальных приборов. [Электронный ресурс]. электрон. текст. дан. Режим доступа: http://www.beta.ru/mobile_labs.
- 3. Промышленная автоматика Danfoss [Электронный ресурс]. электрон. текст. дан. Режим доступа: http://danfoss.com. Заглавие с экрана. Каталог оборудования для автоматизации компании ОВЕН [Электронный ресурс]. Режим доступа: http://www.owen.ru/catalog . Заглавие с экрана.
- 4. MATLAB. Exponenta. Simulink: Инструмент моделирования динамических систем. Содержание [Электронный ресурс]. Режим доступа: http://matlab.exponenta.ru/simulink/book1/index.php.— Заглавие с экрана.
- 5. Портативные и стационарные расходомеры фирмы Portaflow [Электронный ресурс]. Режим доступа: http://portaflow.ru/. Заглавие с экрана.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕС-ПЕЧЕНИЕ

Лекционные занятия — аудитории МК 211 и МК 215, оснащенная доской и презентационной техникой (ноутбук, проектор, экран), комплектом электронных презентаций.

Практические занятия – аудитория МК 212, оснащенная доской, наглядными материалами и плакатами;

Лабораторные занятия –аудитория МК 215, оснащенная информационными стендами; демонстрационная зона по энергосбережению при БГТУ им. В.Г. Шухова (автоматизированные ИТП механического, главного, аудиторного и лабораторного корпусов). Автоматизированные ИТП содержат следующее оборудование для выполнения лабораторных работ:

- Измерительные приборы: портативный электроанализатор количества и качества энергии AR 5M Circutor, ультразвуковой толщиномер Sonage, Sonatest, ультразвуковой расходомер жидкости Portaflow, люксметр RS 180-7133, инфракрасный электронный термометр (пирометр) RayHx4P Raytek, тахометр КМ 6002, тепловизор TVS-110, термоанемометр Testo 425, теплосчётчик КМ-5М;
- Регулятор перепада давления типа IVD/IVF;
- Седельный регулирующий клапан типа VB2;
- Исполнительный механизм типа AMV;
- Электронный регулятор температуры (контроллер) типа ECL Comfort 300;
- Циркуляционные насосы фирмы "Грундфос", в том числе, и моноблоки этих насосов;
- Датчики температуры в системах теплоснабжения: ESM 10 датчик применяется для измерения температуры наружного и внутреннего воздуха

в зданиях, ESMU – погружной датчик температуры, ESM 11 – датчик температуры накладного типа.

лабораторных занятий И самостоятельной работы предусмотрен компьютерный класс МК 424, оснащенный презентационной техникой (проектор Acer Projector P1165) и персональными компьютерами (IntelCore i3-8100 CPU 3.60 ΓΓιι/ Gigabyte Z370 HD3/ RAM 8192 M6/ HDD 1 T6/ NVIDIA GeForce GTX 750/ AOC 23,8"/ ASUS DRW-24D5MT/ Wi-Fi/ LAN100Mb/ CyberPower BS850E), подключенными к локальной сети университета с доступом в интернет и с обеспечением доступа в электронную информационнообразовательную среду университета, а так же с участием в программах Microsoft Office 365 для образования (студенческий) (№ дог. E04002C51M) с возможностью бесплатной загрузки программного обеспечения Microsoft Для практических занятий используется предустановленное лицензионное программное обеспечение Microsoft: Windows 10 Корпоративная (Enterprice) (№ E04002C51M), Microsoft Office Professional Plus 2016 (Соглашение Microsoft Open Value Subscription V6328633/ Договор поставки ПО 0326100004117000038-0003147-01), специализированное программное обеспечение для расчета и моделирования электрических схем в установившемся и переходном режимах: Matlab 2013b № договора 362444, математический редактор Mathcad Express (бесплатная версия).

8. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Рабочая программа с изменениями, дополнениями утверждена на 2017 /2018 учебный год.

Протокол № <u>//</u> зас	седания кафедры от « <u>10</u> » <u>06</u> 2017 г.
Заведующий кафедрой	подпись, ФИО
Директор института	подпись, ФИО

Список изменений и дополнений в рабочей программе, утвержденной на 2017/2018 учебный год.

В пункт 6.3 добавлены следующие интернет-источники:

Организация телемеханики пункта секционирования воздушных сетей [Электронный ресурс]. – Режим доступа: https://owen-energy.ru/15— Заглавие с экрана.

Раб	очая	программа с	изменениями,	дополнениями	утверждена	на 2018	/2019
учебный	год.						

Протокол № заседа	ния кафедры от « <u>14</u> » <u>05</u> 2018 г.
Заведующий кафедрой	подпись, ФИО
Директор института	полпись, ФИО

Список изменений и дополнений в рабочей программе, утвержденной на 2018/2019 учебный год.

В пункт 6.3 добавлены следующие интернет-источники:

Двухконтурные системы [Электронный ресурс]. – Режим доступа: https://teplo.owen.ru/solution/2— Заглавие с экрана.

Методические рекомендации для преподавания по дисциплине «ДАТЧИКИ И РЕГУЛЯТОРЫ В СИСТЕМАХ ЭЛЕКТРОТЕПЛОСНАБЖЕ-НИЯ»

Преподавание дисциплины «Датчики и регуляторы в системах электротеплоснабжения» должно проводиться в соответствии с внутривузовским образовательным стандартом высшего профессионального образования по направлению подготовки 13.03.02. — Элктроэнергетика и электротехника.

Основные изучаемые разделы перечислены в пункте 5.1 рабочей программы. Базовой основой лекционных, практических и лабораторных занятий является учебная литература (пункт 6.1).

При чтении лекций применяются интерактивные средства обучения, которые позволяют демонстрировать электронные презентации изучаемого материала.

Для лабораторных работ предусмотрена следующая структура: допуск, выполнение, защита. Допуск к выполнению лабораторной работы проводится в виде экспресс-опроса. Защита лабораторных работ проходит в виде индивидуального диалога студента с преподавателем.

Промежуточная аттестация проставляется по результатам лабораторного практикума и посещения лекционных и практических занятий.

Контрольной точкой при освоении дисциплины является экзамен, положительная оценка на котором ставится студенту только при наличии выполненных и защищенных всех лабораторных работ, выполненного и защищенного расчетнографического задания, и демонстрации знания теоретического материала изучаемого в течение семестра.

Методические рекомендации студентам по самостоятельному изучению дисциплины «ДАТЧИКИ И РЕГУЛЯТОРЫ В СИСТЕМАХ ЭЛЕКТРОТЕПЛО-СНАБЖЕНИЯ»

Самостоятельное изучение дисциплины основывается на освоении теоретического материала по преподаваемым в рамках лекционного курса разделам, выполнении лабораторных и практических работ, выполнении расчетнографического задания. Изучение теоретических вопросов можно проводить по книгам основной и дополнительной литературы (см. пункт 6.1, 6.2). Для выполнения лабораторных работ используются электронные раздаточные материалы, а также рекомендуется использование справочной литературы и методических указаний (см. пункт 6.2).

Для эффективного изучения теоретической части дисциплины «Датчики и регуляторы в системах электротеплоснабжения» необходимо:

- построить работу по освоению дисциплины в порядке, отвечающем изучению основных разделов (см. пункт 4.1);
- ориентируясь на количество отводимых для самостоятельного изучения часов (см. пункт 3), распланировать работу и систематически проверять уровень полученных знаний, отвечая на контрольные вопросы (см. пункт 5.1);
- работать с основной и дополнительной литературой по соответствующим темам.

Для эффективного изучения практической части дисциплины «Датчики и регуляторы в системах электротеплоснабжения» настоятельно рекомендуется:

- систематически выполнять подготовку к лабораторным работам по предложенным темам (см. пункт 4.3);
- своевременно защищать выполненные и оформленные в соответствии с требованиями работы задания.

Непременным условием допуска к экзамену по дисциплине является наличие всех выполненных и защищенных лабораторных работ, выполненное и защищенное расчетно-графическое задание. Для успешной сдачи экзамена рекомендуется посещение всех лекций и выполнение методических рекомендаций по самостоятельному изучению дисциплины.