минобрнауки РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГООБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г. Шухова)

УТВЕРЖДАЮ Директор энергетического института

канд. техн. наук, доцент

А.В. Белоусов

2 » / 000 pape 2016 r.

РАБОЧАЯ ПРОГРАММА

дисциплины

АВТОМАТИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ПРОИЗВОДСТВ

направление подготовки:

20.04.01 Техносферная безопасность

профиль подготовки:

Промышленная экология и рациональное использование природных ресурсов

Квалификация

магистр

Форма обучения очная

Энергетический институт Кафедра электроэнергетики и автоматики

Белгород - 2016

Рабочая программа составлена на основании требований:

- Федерального государственного образовательного стандарта высшего образования по направлению подготовки 20.04.01 Техносферная безопасность (уровень магистратуры), утвержденного приказом Министерства образования и науки Российской Федерации №172 от 6 марта 2015 г.
- плана учебного процесса БГТУ им. В.Г. Шухова, введенного в действие в 2015 году.

Составитель: канд. техн. наук, доцент	May	А. Н. Потапенко
Рабочая программа согласована с выпускающей кас Заведующий кафедрой: д-р. техн. наук, профессор_ «	of	/
Рабочая программа обсуждена на заседании автоматики	кафедры	электроэнергетики и
« <u>10</u> » <u>Qoelpraul</u> 201 <u>в</u> г., протокол № _ Заведующий кафедрой: канд. техн. наук, доцент	6	А.В. Белоусов
Рабочая программа одобрена методической комисси	ией энергети	ческого института
« <u>10</u> » <u>qollpaul</u> 201 <u>6</u> г., протокол № _ Председатель: канд. техн. наук, доцент	6/10 PS	→ А.Н. Семернин

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ЛИСШИПЛИНЕ

результаты, составлять краткосрочные и долгосрочные прогнозы			Требования к результатам обучения
Mo			треоования к результатам обучения
112		Компетенция	
	компетенции	Γ	Грофессиональные
1	ПК-22		В результате освоения дисциплины обучающийся
			должен:
		_	Знать:
		l =	 основные подходы к построению
		анализировать его	автоматизированных систем мониторинга и управления
		результаты,	распределёнными объектами в техносфере;
		составлять	- принципы работы и технические характеристики
		краткосрочные	датчиков, измерительных приборов и других
		и долгосрочные	элементах в системах автоматизации объектов
		прогнозы	в техносфере;
		развития ситуации	- особенности современных автоматизированных
			систем контроля и управления распределёнными
			объектами в техносфере;
			- особенности локальных автоматических систем
			нижнего уровня автоматизированных систем контроля
			и управления.
			Уметь:
			 применять системы мониторинга объектов в техносфере;
			- разрабатывать автоматизированные системы
			мониторинга с учётом интеллектуальных датчиков
			и измерительных приборов;
			- интегрировать локальные автоматические системы
			нижнего уровня в автоматизированные системы
			контроля и управления.
			Владеть:
			- методами контроля технологических параметров на
			базе современных интеллектуальных и обычных
			датчиков и измерительных приборов для исследования
			объектов в техносфере;
			– методикой выбора датчиков и измерительных
			приборов, в том числе и интеллектуальных, с возможностью обеспечения метрологических и
			технических характеристик для заданных режимов
			работы технологического оборудования;
			– методикой выбора контроллеров различных типов в
			составе автоматизированных систем мониторинга
			в техносфере.
	l		b realtochebe.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

№	Наименование дисциплины (модуля)
1	Информационные технологии в сфере безопасности
2	Мониторинг и экспертиза безопасности жизнедеятельности

Содержание дисциплины служит основой для изучения следующих дисциплин:

№	Наименование дисциплины (модуля)
1	Научно-исследовательская практика
2	Преддипломная практика

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 3 зач. единиц, 108 часов.

Вид учебной работы	Всего часов	Семестр №3
Общая трудоемкость дисциплины, час	108	108
Контактная работа (аудиторные занятия), в т.ч.:	51	51
Лекции	-	-
Лабораторные	-	-
Практические	51	51
Самостоятельная работа студентов, в том числе:	57	57
Курсовой проект	-	-
Курсовая работа	-	-
Расчетно-графическое задание	-	-
Индивидуальное домашнее задание	-	-
Другие виды самостоятельной работы	57	57
Форма промежуточная аттестация (зачет)		

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 4.1. Наименование тем, их содержание и объем

Курс 2 Семестр 3

				ематиче		
		разд	ел по в	идам уч	ебной	
			нагрузки, час			
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятельна я работа	
1. Co	овременные автоматизированные системы управления произво	ОДСТВОМ	ии			
	матизированные системы контроля и управления					
1.1	Современные автоматизированные системы управления		2		3	
	производством, основные уровни автоматизации					
	управления производственным процессом и их					
	особенности.					
1.2	Особенности автоматизированных систем контроля и		4		4	
	управления распределёнными объектами					

	в техносфере с интегрированными системами мониторинга.		
1.3	Общие понятия о датчиках и измерительных приборах, их	6	6
	основные характеристики. Понятия уравнений динамики и		
	статики датчиков. Примеры математических моделей		
	применяемых датчиков.		
2. Ин	нструментальные методы контроля технологических параметр	ОВ	
2.1	Датчики и приборы для измерения температуры.	7	8
	Их назначение и классификация. Контактные		
	и бесконтактные методы измерения температуры.		
	Типы датчиков температуры, их особенности и принцип		
	действия. Особенности интеллектуальных датчиков		
	температуры и измерительных приборов. Датчики и		
	приборы для измерения давления. Их назначение и		
	классификация. Типы датчиков давления, их особенности и принцип действия. Особенности интеллектуальных		
	принцип действия. Особенности интеллектуальных датчиков давления и измерительных приборов.		
2.2	Датчиков давления и измерительных приооров. Датчики и приборы для измерения количества и расхода	6	7
2.2	вещества. Их назначение и классификация. Типы датчиков		,
	расхода, их особенности и принцип действия. Особенности		
	интеллектуальных датчиков. Датчики и приборы для		
	измерения уровня. Их назначение и классификация. Типы		
	датчиков уровня, их особенности и принцип действия.		
	Особенности интеллектуальных датчиков.		
2.3	Микропроцессорные измерительные приборы.	7	7
	Многофункциональные приборы с учетом измерения		
	скорости и влажности воздушных потоков. Инфракрасные		
	термометры для контроля энергосистем и оборудования.		
	Микропроцессорные ультразвуковые расходомеры		
	жидкости и толщиномеры. Ультразвуковые расходомеры		
	жидкости с применением бесконтактных методов		
	измерения. Микропроцессорные анализаторы количества и качества электрической энергии. Тепловизоры.		
3.	Системы автоматизированного мониторинга на базо	е современных	 датчиков
	мерительных приборов	с современных	датчиков
3.1	Трехуровневые системы автоматизированного	6	7
	мониторинга. Блок-схема и особенности уровней этой		
	системы. Двухуровневые системы автоматизированного		
	мониторинга на базе современных датчиков		
	и измерительных приборов, как интеллектуального,		
	так и обычного типов. Блок-схема и особенности уровней		
	этих систем. Комбинированный тип систем		
	автоматизированного мониторинга. Блок-схема		
2.2	и особенности уровней этих систем.		0
3.2	Классификация контроллеров. Типовой контроллер	7	8
	в автоматизированных системах мониторинга. Назначение,		
	структура и особенности. Типовые специализированные контроллеры. Их назначение, структура, основные блоки		
	регулирования и особенности. Типовые контроллеры		
	программно-логического типа. Их назначение, структура и		
	особенности.		
3.3	Особенности построения локальных систем	6	7
	автоматического регулирования в составе		
	автоматизированных систем мониторинга на основе		

типовых специализированных контроллеров, контроллеров программно-логического типа и др.		
ВСЕГО	51	57

4.2. Содержание практических занятий

No॒	Наименование	Тема практического занятия	К-во	К-во
Π/Π	раздела дисциплины		часов	часов
				CPC
		семестр №3		
1.		Современные автоматизированные	2	3
	Современные	системы управления производством.		
2.	автоматизированные	Особенности автоматизированных	4	4
	системы управления	систем контроля и управления		
	производством и	распределёнными объектами		
	автоматизированные	в техносфере с интегрированными		
	системы контроля и	системами мониторинга.		
3.	управления	Общие понятия о датчиках и измерительных приборах.	6	6
4.		Датчики и приборы для измерения	4	5
		температуры.		
5.		Датчики и приборы для измерения	3	4
	11	давления.		
6.	Инструментальные методы	Датчики и приборы для измерения	3	4
	контроля технологических	количества и расхода вещества.		
7	параметров	Датчики и приборы для измерения	3	3
		уровня.		
8.		Микропроцессорные измерительные приборы.	7	7
9.		Особенности создания различных	6	7
7.		систем автоматизированного		,
		мониторинга.		
10.	Системы	Особенности применения	7	8
10.	автоматизированного	контроллеров различных типов в	,	Ü
	мониторинга на базе	автоматизированных системах		
	современных датчиков	мониторинга.		
11.	и измерительных приборов	Особенности построения локальных	6	7
	1 1	систем автоматического регулирования		
		в составе автоматизированных систем		
		мониторинга		
		ОЛОТИ	51	57

4.3. Содержание лабораторных занятий

Лабораторные занятия учебным планом не предусмотрены.

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов (типовых заданий)

No	Наименование	Содержание вопросов (типовых заданий)
Π/Π	раздела дисциплины	, , ,
1	Современные автоматизированные	1. Понятия информатика, кибирнетика, автоматика. 2. Первые промышленные регуляторы и их особенности.
	системы управления	3.Современные автоматизированные системы
	производством и	управления производством, основные уровни
	автоматизированные	автоматизации управления производственным процессом
	системы контроля и	и их особенности.
	управления	4. Основные понятия автоматических систем контроля и управления. Блок-схема автоматизации объекта управления.
		5. Особенности автоматизированных систем контроля и управления распределёнными объектами в техносфере и с интегрированными системами мониторинга.
		6. Понятие первичного измерительного преобразователя. Основные его характеристики.
		7. Понятие измерительного прибора. Основные его характеристики.
		8. Уравнения динамики и статики. Привести примеры с
		учетом датчиков температуры или давления.
		9. Временные характеристики датчиков. Привести
		примеры с учетом датчиков температуры или давления.
		10. Частотные характеристики. Привести примеры
		с учетом датчиков температуры или давления. 11. Математические модели датчиков на примере
		термопары и датчика давления
		12. Передаточные функции распределённых объектов в
		техносфере по основным каналам регулирования.
2	Инструментальные методы	13. Датчики и приборы для измерения температуры. Их
	контроля технологических	назначение и классификация.
	параметров	14. Термоэлектрические датчики. Типы датчиков температуры, их особенности и принцип действия.
		Передаточные функции этих типов датчиков
		температуры.
		15. Особенности контактных и бесконтактных средств
		измерения температуры.
		16. Датчики и приборы для измерения давления. Их
		назначение и классификация. Основные типы датчиков давления и их принцип действия. Передаточные
		функции датчиков давления.
		17. Особенности датчиков давления тензорезисторного
		типа. Статические и динамические характеристики
		датчиков давления. Особенности при измерении
		давления с учетом импульсных трубок.
		18. Датчики и приборы для измерения количества и
		расхода. Их назначение и классификация.

- 19. Типы датчиков расхода, их особенности и принцип действия (турбинные и крыльчатые, ультразвуковые и вихревые). Передаточные функции датчиков расхода.
- 20. Датчики и расходомеры переменного перепада давления.
- 20. Датчики и расходомеры электромагнитного типа.
- 21. Датчики и приборы для измерения уровня сред (жидкостей и сыпучих материалов). Их особенности и принцип действия.
- 22. Интеллектуальные приборы для измерения тепловой энергии и их классификация. Особенности применяемых датчиков в составе этих приборов.
- 23. Интеллектуальные приборы для измерения количества газа и их особенности. Особенности применяемых датчиков в составе этих приборов.
- 24. Интеллектуальные приборы для измерения количества газа и их особенности. Особенности применяемых датчиков в составе этих приборов.
- 25. Многофункциональные приборы с учетом измерения скорости и влажности воздушных потоков.
- 26. Микропроцессорные инфракрасные термометры для контроля систем и оборудования. Их назначение, особенности и основные характеристики.
- 27. Микропроцессорные ультразвуковые расходомеры жидкости и толщиномеры.
- 28. Микропроцессорные анализаторы количества и качества электрической энергии. Их назначение и особенности и основные характеристики.
- 29. Тепловизоры для обследования систем и оборудования. Их назначение, особенности и характеристики.
- 3 Системы автоматизированного мониторинга на базе современных датчиков и измерительных приборов
- 30. Многоуровневые системы автоматизированного мониторинга.
- 31. Функциональная схема трехуровневой системы, назначение каждого уровня системы.
- 32. Типы двухуровневых систем автоматизированного мониторинга и их особенности.
- 33. Современные варианты систем автоматизированного мониторинга. Их особенности и структура.
- 34. Особенности структуры 3-х уровневой автоматизированной системы диспетчерского управления распределенными объектами.
- 35. Особенности верхнего уровня автоматизированных систем контроля и управления, его назначение. аппаратная часть, программное обеспечение и каналы связи.
- 36. Особенности среднего уровня автоматизированных систем контроля и управления, его назначение.

аппаратная	часть,	программное	обеспечение	И	каналы
связи.					

- 37. Особенности нижнего уровня автоматизированных систем контроля и управления, его назначение. аппаратная часть, программное обеспечение и каналы связи. Системы автоматического регулирования нижнего уровня. Автоматизированные системы диспетчерского управления (основные типы).
- 38. Классификация контроллеров.
- 39. Типовой контроллер в автоматизированных системах мониторинга. Назначение, структура и особенности.
- 40. Типовые специализированные контроллеры. Их назначение, структура, основные блоки регулирования и их особенности.
- 41. Типовые контроллеры программно-логического типа. Их назначение, структура и особенности.
- 42. Особенности построения локальных систем автоматического регулирования на основе типовых специализированных контроллеров, контроллеров программно-логического типа и др.

5.2. Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем

Учебным планом выполнение курсового проекта и курсовой работы не предусмотрено.

5.3. Перечень расчетно-графических заданий

Учебным планом выполнение расчетно-графических заданий не предусмотрено.

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

- 1. Схиртладзе, А. Г. Автоматизация технологических процессов и производств: учеб. /А. Г. Схиртладзе; А. Ф. Федотов; В. Г. Хомченко. Москва: Абрис, 2012. 564 с.
- 2. Потапенко А.Н. Датчики и регуляторы в системах теплоснабжения: учебное пособие/ А.Н. Потапенко. Белгород: Изд-во БГТУ, 2016. 250 с.
- 3. Потапенко А.Н. Автоматизация процессов и оборудования: учебное пособие/ А.Н. Потапенко, А.В. Белоусов. Белгород: Изд-во БГТУ, 2016. 145 с.
- 4. Старостин А.А. Технические средства автоматизации и управления [Электронный ресурс]:учеб.пособие /А. А. Старостин, А. В. Лаптева. Екатеринбург: Изд-во Урал. ун-та, 2015. 168 с. Режим доступа: http://www.iprbookshop.ru/68302.html.

6.2. Перечень дополнительной литературы

- 1. Приборы и средства автоматизации. (Т.1.): каталог. М.: Научтехлитиздат, 2004. 276 с.
- 2. Приборы и средства автоматизации. (Т.2.): каталог. М.: Научтехлитиздат, 2004. 168 с.
- 3. Приборы и средства автоматизации. (Т.3.): каталог. М.: Научтехлитиздат, 2004.-238 с.
- 4. Датчики и регуляторы технологических параметров: методические указания /сост. А. Н. Потапенко [и др.]. Белгород: Изд-во БГТУ им. В. Г. Шухова, 2012. 90 с.
- 5. Технические средства автоматизации и управления. Часть 1. Контрольно-измерительные средства систем автоматизации и управления [Электронный ресурс]:учеб. пособие /В.В. Тугов [и др.]. Оренбург: Изд-во ОГУ, 2016. 109с. Режим доступа: http://www.iprbookshop.ru/69956.html.

6.3. Перечень интернет ресурсов

- 1. Полтраф. Промышленная автоматика [Электронный ресурс]. Режим доступа: http://poltraf.ru/.— Заглавие с экрана.
- 2. ICP DAS | Продукты и решения для промышленной автоматизации [Электронный ресурс]. Режим доступа: http://icp-das.ru. Заглавие с экрана.
- 3. Danfoss. Оборудование [Электронный ресурс]. Режим доступа http://products.danfoss.ru/home/#/. Заглавие с экрана.
- 4. ОВЕН. Оборудование для автоматизации [Электронный ресурс]. Режим доступа: http://www.owen.ru/catalog. Заглавие с экрана.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Практические занятия проводятся в аудиториях кафедры М211, М212.

Аудитория M211 оснащена презентационной техникой и персональными компьютерами (IntelCorei7-3770/ H81/ 8192Mb/ 1Tb/ 21.5"IPS/ Wi-Fi/ LAN100Mb/DWD-RW), подключенными к локальной сети университета с доступом в интернет.

Для практических занятий используется предустановленное лицензионное программное обеспечение: Windows 7 Professional (№ дог. 63-14к от 02.07.2014), Office 2013 Professional (№ дог. 31401445414 от 25.09.2014) и Matlab 2014b (акт предоставления прав № Ax025341 от 06.07.2016).

Предусмотрено применение современных микропроцессорных измерительных приборов интеллектуального типа кафедры электроэнергетики и автоматики: Портативный электроанализатор количества и качества энергии AR 5M Circutor, ультразвуковой толщиномер Sonage, Sonatest, ультразвуковой расходомер жидкости Portaflow, люксметр RS 180-7133, инфракрасный электронный термометр (пирометр) RayHx4P Raytek, тахометр КМ 6002, тепловизор TVS-110, термоанемометр Testo 425.

Предусмотрено использование современных автоматизированных систем контроля и управления на базе демонстрационной зоны БГТУ им. В.Г. Шухова (автоматизированные индивидуальные тепловые пункты главного учебного корпуса, учебных корпусов №1, 2 и 4).

тверждение рабочей пр			
абочая программа без из	менений утвержден	а на 201 ${\underline{\cal F}}$ /201 ${\underline{\cal S}}$ учебный	і год
Іротокол № <u>75</u> засед	ания кафедры от « <u>7</u>	10 » Wolhe 2017	Г.
аведующий кафедрой	Apro	А.В. Белоусов	
Директор института	for	А.В. Белоусов	

з гверждение раоочеи программы оез изменени	4.
Рабочая программа без изменений утверждена на 2	$201\underline{\$}$ /201 $\underline{ extit{9}}$ учебный год
Протокол № <u>10</u> заседания кафедры от « <u>14</u> » _	Mail 2018 r.
Заведующий кафедрой	_ А.В. Белоусов
Директор института	_ А.В. Белоусов

8. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Утверждение рабочей программы без изменений Рабочая программа без изменений утверждена на **2019/2020** учебный год.

Протокол № <u>/З</u> засе	едания кафедры от « <u></u>	<u>моня</u> 20 <u>19</u> г.
Заведующий кафедрой	подпись, ФИО	Белоусов А.В
Директор института	подпись, ФИО	Белоусов А.В.

8. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Іротокол № <u>10</u> засед	ания кафедры о	T «14» mane	20 <i>to</i> r.
аведующий кафедрой	<	Horas	A.B. Benoycol
	подпись, ФИС)	
		_#	*
Циректор института	. <	Secret	A.B. Benoyco
	подпись, ФИС		

ПРИЛОЖЕНИЕ

Методические указания для обучающегося по освоению дисциплины.

Курс "Автоматизация технологических процессов и производств" предполагает получение студентами углубленных теоретических и практических знаний о современных автоматизированные системах управления производством, инструментальных методах контроля технологических параметров, основных типах датчиков и измерительных приборов, о системах автоматизированного мониторинга на базе современных датчиков и измерительных приборов, как интеллектуального, так и обычного типов.

В рамках данного курса обучение осуществляется в виде практических занятий. Для закрепления практических навыков предусмотрен итоговый контроль, а формой итогового контроля является зачет. Для успешной сдачи зачета рекомендуется посещение всех занятий и выполнение методических рекомендаций по самостоятельному изучению дисциплины.

При подготовке к практическим занятиям студентам необходимо самостоятельно изучить теоретический материал, необходимый для выполнения заданий, используя основную и дополнительную литературу и рекомендованные электронные ресурсы. Рекомендуется на 1 час практических занятий затрачивать не менее 1 часа самостоятельной работы.

Самостоятельное изучение дисциплины основывается на освоении теоретического материала, разделы которого перечислены в пункте 4.1 рабочей программы. Изучение теоретических вопросов можно проводить по источникам основной, дополнительной литературы и интернет-источникам (см. пункт 6.1, 6.2, 6.3).

Для эффективного изучения теоретической части дисциплины «Автоматизация технологических процессов и производств» необходимо:

- построить работу по освоению дисциплины в порядке, отвечающем изучению основных разделов (см. пункт 4.1);
- ориентируясь на количество отводимых для самостоятельного изучения часов (см. пункт 4.1), распланировать работу и систематически проверять уровень полученных знаний, отвечая на контрольные вопросы (см. пункт 5.1);
- работать с основной, дополнительной литературой и интернет источниками по соответствующим темам.